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Talk outline

▷ Quick recap of the learning framework (supervised learning)

▷ Neural networks

▷ Learning from persistent homology

▷ Learning with persistent homology
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Domain set X (e.g., Rd)

Label set Y (e.g., {0, 1})

Hypothesis class H

Distribution over domain & labels (xi,yi) ∼ P

Training data S = ((x1,y1), . . . , (xm,ym)) ∼ Pm

A learner (upon receiving training data) needs to output a hypothesis

H ∋ h : X → Y

Such a hypothesis should have small risk, defined as

LP(h) = Pr(x,y)∼P[h(x) ̸= y]
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Problem setting (of supervised learning)

However, we can only measure the empirical risk

LS(h) =
|i∈{1,...,m}:h(xi) ̸=yi|

m

Classic learning paradigm: minimize empirical risk

h ∈ argminh∈H LS(h)

Example:

X = Rd,Y = {+1,−1}

H = {x 7→ sgn⟨x,w⟩ : w ∈ Rd}

w

(aka halfspace classifiers)
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Problem setting (of supervised learning)

An important aspect is that, typically, inputs are of fixed size!

Other types of data, such as

▷ sets,

▷ multi-sets,

▷ graphs, or

▷ point clouds

are (or were) – lets put it this way – more challenging to handle!

General recipe: Find a reasonable way to vectorize!



Neural networks

Typical (feed-forward) neural networks compose maps of the form

f : Rd → Re

x 7→ σ(Ax)

i.e., a linear map A, followed by a (component-wise) activation, e.g.,

Rectified Linear Unit (ReLU)

here: σ(x) = max{0, x}
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Neural networks

Typical (feed-forward) neural networks compose maps of the form

f : Rd → Re

x 7→ σ(Ax)

i.e., a linear map A, followed by a (component-wise) activation, e.g.,

Rectified Linear Unit (ReLU)

Composition of such “building blocks” gives

i.e., the hypothesis class is parametrized by (A1, . . . ,AL,w).

here: σ(x) = max{0, x}

x

σ : R → R

F : Rd → R
x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · · ))
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Barcodes as input?

So, what if the input, x, to

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · · ))

A pragmatic approach [Bendich et al., 2014] :

take the lengths of the N-longest bars→ gives a N-dim. vectorization

Well, it would be desirable to preserve stability wrt. dB, dWp,q .



Question: Why should we care about “how” we vectorize?

is now a persistence barcode, G, i.e., a multi-set of (birth, death) tuple?

Question: How can we deal with this?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026243/


Prior art

Vectorization techniques
Persistence landscapes [Bubenik, 2015]
Persistence silhouettes [Chazal et al., 2014]
Persistence images [Adams et al., 2017]
Template functions [Perea et al., 2019]
ATOL† [Royer et al., 2019]

† actually an (unsupervised) learning technique
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In fact, most vectorization strategies are task-agnostic!

This motivates learnable vectorization schemes:

c1 =
∑

p∈G sθ1(p)
}

Learnable means that we can optimize the θi’s for a given task/criterion!
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Can we obtain task-optimal vectorizations?

Overall, this changes

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · · ))
to

F : B → R, G 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1VΘ(G)) · · · ))

Upon the definition of a suitable loss function

ℓ : H × X× Y → R

we can compute, for a training sample, (Gi,yi), the parameter update†

“Easy” because of automatic differentiaton (e.g., using PyTorch).

Θt+1 = Θt − η
∂ℓ(F, (Gi,yi))

∂Θ

† and, obviously for all Ai’s as well
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Transitioning to learning with PH

In ML, we have, for long, degraded PH to a “fancy” feature extractor.

Question: What if we want to control topological properties?

Example:

A1 A2 Al
σ σ

z1, . . . , zm, with zi ∈ Rh

x1, . . . , xm

e.g., control the lifetime of 0-dim. features (from Vietoris-Rips PH)

σ

⇝



Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ



Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

PH

persistence barcode of 0-dim. features

length = lifetime (li)
z1, . . . , zm



Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)
∑

i |li − η|

z1, . . . , zm



Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)
∑

i |li − η|

Importantly,

z1, . . . , zm



Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)

▷ minimizing the (joint) loss, requires gradients wrt. all Ai’s

∑
i |li − η|

Importantly,

z1, . . . , zm



Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)

▷ minimizing the (joint) loss, requires gradients wrt. all Ai’s

∑
i |li − η|

Importantly,

z1, . . . , zm



Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)

▷ minimizing the (joint) loss, requires gradients wrt. all Ai’s

∑
i |li − η|

Importantly,

z1, . . . , zm



Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)

▷ minimizing the (joint) loss, requires gradients wrt. all Ai’s
▷ The good news is that this can be done

∑
i |li − η|

Importantly,

 [Carrière et al., 2020][Hofer et al., 2019] 

z1, . . . , zm

[Brüel-Gabrielsson et al., 2019]

https://arxiv.org/pdf/1906.09003.pdf
http://proceedings.mlr.press/v119/hofer20a.html
https://arxiv.org/abs/1905.12200
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Transitioning to learning with PH

Lets look at some toy data first.

Notably, this controls the length of the minimal spanning tree (MST).

▷ Compute 0-dim. Vietoris-Rips PH

▷ Minimize ConnLoss wrt. the xi (for a desired η > 0)

Here’s what we aim to do:

2.0

0.0

1.0

−1.0
−1.0 2.0

xi ∼ U([0, 1]2)

[Robins, 2000]

https://people.physics.anu.edu.au/~vbr110/thesis/
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Iteration 0 Iteration 10 Iteration 20 Iteration 50
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Transitioning to learning with PH

MST (Original) MST (after optimization)



Some self-advertisement :)

Embedding into the PyTorch framework:

Note that this uses our own PH implementation (works on GPU), see�

https://c-hofer.github.io/torchph/index.html
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Why would this be useful?

In [Hofer et al., 2019] , we study ConnLoss with autoencoders.

Why? You might want to do kernel density estimation in Z(= Rn)

x̂x
fθ : X → Z gϕ : Z → X Similarity[x, x̂]

Can be problematic, due to scale differences → we can impose scale via η

PH

persistence barcode of 0-dim. features

length = lifetime (li)

+ ConnLoss

https://arxiv.org/pdf/1906.09003.pdf


Application: One-class learning

Training (step I)

Similarity[·, ·]†+ ConnLoss (at desired scale η > 0)

A
ux
ili
ar
y

un
la
bl
ed

da
ta
Trained only once using unlabeled data

fθ gϕ

† e.g.,Similarity[·, ·] ≡ mean squared-error (MSE)

PH

CIFAR10 images (32× 32 RGB)

Notably, [Moor et al., 2019] follow similar ideas to learn a representation
space (Z) that preserves the input space topology.



http://proceedings.mlr.press/v119/moor20a.html
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Application: One-class learning

Training (step II)

fθ

O
ne

-c
la
ss

sa
m
pl
es r = η/2

fθfθ

Count #samples falling into balls of radius
η/2, anchored at the one-class instances

KDE-inspired one-class "learning"

Computation of a one-class score

e.
g.
,c
la
ss

=
do

gs

Evaluation protocol

In-class

Out-of-class
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Application: Topological regularizers

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage “densification” of learned representations

{0, 1} = Y
c†

We want to approximate c by F

X

(implemented as a neural network)

† c : X → Y is an unknown labeling function



http://proceedings.mlr.press/v119/hofer20a.html


Application: Topological regularizers

One aspect of the generalization puzzle in deep learning:

Generalization in spite of memorization



Application: Topological regularizers

One aspect of the generalization puzzle in deep learning:

Generalization in spite of memorization

In fact, we can typically fit the training datawithout error, i.e., LS(F) = 0.
(even under random labels [Zhang et al., 2017] )

https://arxiv.org/abs/1611.03530


Application: Topological regularizers

One aspect of the generalization puzzle in deep learning:

Generalization in spite of memorization

In fact, we can typically fit the training datawithout error, i.e., LS(F) = 0.
(even under random labels [Zhang et al., 2017] )

In [Hofer et al., 2020] , we study how the distribution around
representations of training samples, φ∗(P), affects generalization.



A1 A2 Al
σ σ

x ∼ P
σ

w⊤︸ ︷︷ ︸
φθ

Consider

https://arxiv.org/abs/1611.03530
http://proceedings.mlr.press/v119/hofer20a.html
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Application: Topological regularizers

Lets decompose F as F = γ ◦φ : X → Z → Y with γ(x) = sgn(w⊤x).

{0, 1}
γφ

γ−1(0) γ−1(1)

Z

Q0

Q1

▷ Z is the codomain of φ, γ−1(i) the decision region of class i

We aim for a densification of Qi via regularization of φ.

▷ Label-wise distribution, Qi (restriction of φ∗(P) to class i), in Z
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Lets take a closer look at densification.

Consider, for a reference set M ⊂ Z, its metric extension†

Mϵ =
⋃

x∈M B(x, ϵ), ϵ > 0

ϵ

M

† B(x, ϵ) = {u ∈ Z : d(x,u) ⩽ ϵ}

Question: How much mass is in the ϵ-belt?



Application: Topological regularizers

Informally, densification means:

For a given mass in the reference set M, increase the mass
concentrated in its ϵ-extension!

M

Mϵ
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Application: Topological regularizers

The idea is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)†:

ei

len(ei) = d(φθ(xi1),φθ(xi2))

ei
zi1 zi2

as φ is parametrized by a neural network
with parameters θ

Differentiable in θ

⇒ we can control the edge lengths of the MST (as mentioned earlier)
† d(x,y) = ∥x− y∥
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Application: Topological regularizers

We call z1, . . . , zb ∈ Z β-connected if all edges in the corresponding MST
are not longer than β.

β

Ruler

> β ⩽ β

This allows us to talk about properties of z1, . . . , zb ∼ Q, i.e., b iid draws
from Q.
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Application: Topological regularizers

Let b ∈ N. We call Q a cβb -connected distribution if

cβb ⩽ Pr[Z1, . . . ,Zbare β-connected]

holds for Z1, . . . ,Zb
iid
∼ Q with β > 0, cβb > 0.

This is a property of the product measure Qb.

β-connected
not β-connected

✓
é

Example: five draws from Qb with b = 4

✓ é✓✓✓

1. We can show that controlling connectivity properties
(β-connectedness) of Qb leads to densification of Q.

2. We can show that densification directly relates to generalization.
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Some results for a neural classifier‡ on MNIST (10 classes) in a small
sample-size regime (250 samples):

†β chosen via cross-validation on a small validation set

Vanilla 7.1 +/- 1.0

+ Jacobian reg. 6.2 +/- 0.8
+ DeCov 6.5 +/- 1.1
+ VR 6.1 +/- 0.5
+ cw-CR 7.0 +/- 0.6
+ cw-VR 6.2 +/- 0.8

+ ConnLoss (best)
+ ConnLoss†

5.6 +/- 0.7
5.9 +/- 0.3

‡ using a mid-size convolutional neural network (CNN13)
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Application: Topological regularizers

Some results for a neural classifier‡ on CIFAR10 (10 classes) in a small
sample-size regime (500 samples):

†β chosen via cross-validation on a small validation set

Vanilla 39.4 +/- 1.5

+ Jacobian reg. 39.7 +/- 2.0
+ DeCov 38.2 +/- 1.5
+ VR 38.6 +/- 1.4
+ cw-CR 39.0 +/- 1.9
+ cw-VR 38.5 +/- 1.6

‡ using a mid-size convolutional neural network (CNN13)

+ ConnLoss (best)
+ ConnLoss†

36.5 +/- 1.2
36.8 +/- 0.3



What’s ahead of us?

There is so much exciting stuff that is going on right now!

Here are some examples . . .

▷ Theory for for optimizing PH-based functions [Carrière et al., 2020]

▷ Studying learning behavior of neural networks [Rieck et al., 2018]

▷ PH for learning with graphs [Hofer et al., 2019; Rieck et al. 2021]

▷ Using simplicial complexes for message passing [Bodnar et al., 2021]

▷ Differentiable topology layers [Brüel-Gabrielsson et al., 2019]

▷ Topological attention for time-series forecasting [Zeng et al., 2021]

▷ Topology-preserving image segmentation [Hu et al., 2019]

▷ Topological regularization of decision boundaries [Chen et al., 2019]











Again, this is, by far, not an exhaustive listing!







http://proceedings.mlr.press/v119/hofer20a.html
https://arxiv.org/abs/1812.09764
https://arxiv.org/abs/2102.07835
http://proceedings.mlr.press/v119/hofer20b.html
https://arxiv.org/abs/2103.03212
https://arxiv.org/abs/1905.12200
https://arxiv.org/pdf/2107.09031.pdf
http://proceedings.mlr.press/v89/chen19g/chen19g.pdf
https://proceedings.neurips.cc/paper/2019/file/2d95666e2649fcfc6e3af75e09f5adb9-Paper.pdf


What I (personally) find interesting

Continuing work along the lines of [Bianchini & Scarselli, 2014] , i.e.,
using concepts from topology to study hypothesis set complexity.



see also [Ramamurthy et al., 2019]
[Guss & Salakhutdinov, 2018]
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What I (personally) find interesting

Continuing work along the lines of [Bianchini & Scarselli, 2014] , i.e.,
using concepts from topology to study hypothesis set complexity.

Can we possibly come up with other/better measures of quantifying
hypothesis set complexity (similar to VC-dim., or Rademacher complexity)?

With differentiable layers for NN’s that compute PH, we have a great tool
– but, we do not really know what to do with it (yet).



see also [Ramamurthy et al., 2019]
[Guss & Salakhutdinov, 2018]

http://proceedings.mlr.press/v119/hofer20a.html
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