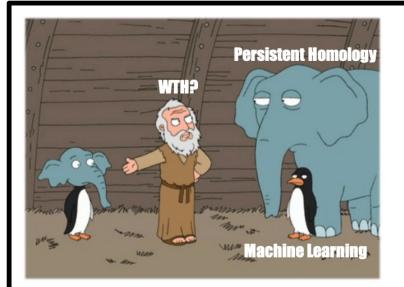
Note: All references marked 🖹 are clickable!



Learning from and with persistent homology

Roland Kwitt

T	11			_ 1	•		
Tal			II	11		n	Δ
ıaı		v	ч				

- ▷ Quick recap of the learning framework (supervised learning)
- ▶ Neural networks
- ▶ Learning from persistent homology
- ▶ Learning with persistent homology

Domain set

 \mathfrak{X} (e.g., \mathbb{R}^{d})

Label set

y (e.g., $\{0, 1\}$)

Hypothesis class

 \mathcal{H}

Distribution over domain & labels

 $(x_i, y_i) \sim \mathcal{P}$

Training data $S = ((x_1, y_1), ..., (x_m, y_m)) \sim \mathcal{P}^m$

Domain set

$$\mathfrak{X}$$
 (e.g., \mathbb{R}^{d})

Label set

$$y$$
 (e.g., $\{0, 1\}$)

Hypothesis class

$$\mathcal{H}$$

Distribution over domain & labels

$$(x_i, y_i) \sim \mathcal{P}$$

Training data
$$S = ((x_1, y_1), ..., (x_m, y_m)) \sim \mathcal{P}^m$$

A **learner** (upon receiving training data) needs to output a hypothesis

$$\mathcal{H} \ni h: \mathcal{X} \to \mathcal{Y}$$

Domain set

$$\mathfrak{X}$$
 (e.g., \mathbb{R}^d)

Label set

$$y$$
 (e.g., $\{0, 1\}$)

Hypothesis class

$$\mathcal{H}$$

Distribution over domain & labels

$$(x_i, y_i) \sim \mathcal{P}$$

Training data
$$S = ((x_1, y_1), ..., (x_m, y_m)) \sim \mathcal{P}^m$$

A learner (upon receiving training data) needs to output a hypothesis

$$\mathcal{H} \ni h: \mathcal{X} \to \mathcal{Y}$$

Such a hypothesis should have **small risk**, defined as

$$L_{\mathcal{P}}(h) = \mathbf{Pr}_{(x,y) \sim \mathcal{P}}[h(x) \neq y]$$

However, we can only measure the **empirical risk**

$$L_S(h) = \frac{|i \in \{1, \dots, m\}: h(x_i) \neq y_i|}{m}$$

However, we can only measure the **empirical risk**

$$L_{S}(h) = \frac{|i \in \{1, \dots, m\} : h(x_i) \neq y_i|}{m}$$

Classic learning paradigm: minimize empirical risk

 $h \in arg\, min_{h \in \mathcal{H}} \, L_S(h)$

However, we can only measure the **empirical risk**

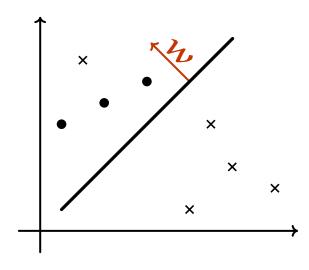
$$L_{S}(h) = \frac{|i \in \{1, \dots, m\} : h(x_i) \neq y_i|}{m}$$

Classic learning paradigm: minimize empirical risk

 $h \in arg\, min_{h \in \mathcal{H}}\, L_S(h)$

Example:

$$\mathcal{X} = \mathbb{R}^d, \mathcal{Y} = \{+1, -1\}$$
 $\mathcal{H} = \{\mathbf{x} \mapsto \operatorname{sgn}\langle \mathbf{x}, \mathbf{w} \rangle : \mathbf{w} \in \mathbb{R}^d\}$
(aka halfspace classifiers)



Problem setting (of supervised learning)
An important aspect is that, typically, inputs are of fixed size!

An important aspect is that, typically, inputs are of **fixed** size!

Other types of data, such as

- ▷ sets,
- ▶ multi-sets,
- ▷ graphs, or
- > point clouds

are (or were) – lets put it this way – more challenging to handle!

An important aspect is that, typically, inputs are of **fixed** size!

Other types of data, such as

- ▷ sets,
- ▶ multi-sets,
- ▷ graphs, or
- > point clouds

are (or were) - lets put it this way - more challenging to handle!

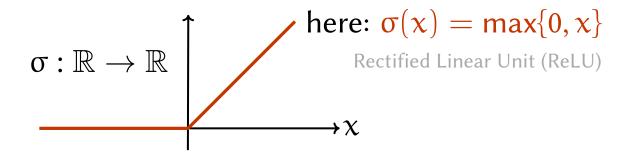
General recipe: Find a reasonable way to vectorize!

Neural networks

Typical (feed-forward) neural networks compose maps of the form

$$\mathsf{f}:\mathbb{R}^{\mathrm{d}} \to \mathbb{R}^{e}$$
 $\mathsf{x} \mapsto \sigma(\mathsf{A}\mathsf{x})$

i.e., a linear map A, followed by a (component-wise) activation, e.g.,

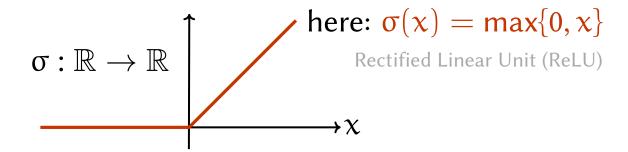


Neural networks

Typical (feed-forward) neural networks compose maps of the form

$$f: \mathbb{R}^d \to \mathbb{R}^e$$
 $\mathbf{x} \mapsto \sigma(\mathbf{A}\mathbf{x})$

i.e., a linear map A, followed by a (component-wise) activation, e.g.,



Composition of such "building blocks" gives

$$F: \mathbb{R}^{d} \to \mathbb{R}$$

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \sigma(\mathbf{A}_{L} \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_{1} \mathbf{x}) \cdots))$$

i.e., the **hypothesis class** is parametrized by $(A_1, ..., A_L, w)$.

So, what if the input, x, to

$$F: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto \mathbf{w}^\top \sigma(\mathbf{A}_L \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_1 \mathbf{x}) \cdots))$$

So, what if the input, x, to

$$F: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto \mathbf{w}^\top \sigma(\mathbf{A}_L \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_1 \mathbf{x}) \cdots))$$

is now a **persistence barcode**, G, i.e., a multi-set of (birth, death) tuple?

So, what if the input, x, to

$$F: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto \mathbf{w}^\top \sigma(\mathbf{A}_L \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_1 \mathbf{x}) \cdots))$$

is now a **persistence barcode**, G, i.e., a multi-set of (birth, death) tuple?

So, what if the input, x, to

$$F: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto \mathbf{w}^\top \sigma(\mathbf{A}_L \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_1 \mathbf{x}) \cdots))$$

is now a **persistence barcode**, G, i.e., a multi-set of (birth, death) tuple?

Question: How can we deal with this?

So, what if the input, x, to

$$F: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto \mathbf{w}^\top \sigma(\mathbf{A}_L \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_1 \mathbf{x}) \cdots))$$

is now a **persistence barcode**, G, i.e., a multi-set of (birth, death) tuple?

Question: How can we deal with this?

A pragmatic approach [Bendich et al., 2014] [A:

take the **lengths** of the N-longest bars \rightarrow gives a N-dim. vectorization

So, what if the input, x, to

$$F: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto \mathbf{w}^\top \sigma(\mathbf{A}_L \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_1 \mathbf{x}) \cdots))$$

is now a **persistence barcode**, G, i.e., a multi-set of (birth, death) tuple?

Question: How can we deal with this?

A pragmatic approach [Bendich et al., 2014] [A:

take the **lengths** of the N-longest bars → gives a N-dim. vectorization

Question: Why should we care about "how" we vectorize?

Well, it would be desirable to preserve **stability** wrt. d_B , $d_{W_{p,q}}$.

Prior art

Vectorization techniques

Persistence landscapes

Persistence silhouettes

Persistence images

Template functions

ATOL[†]

[Bubenik, 2015][2]

[Chazal et al., 2014]

[Adams et al., 2017]

[Perea et al., 2019]

[Royer et al., 2019]

Prior art

Vectorization techniques

Persistence landscapes

Persistence silhouettes

Persistence images

Template functions

ATOL[†]

[Bubenik, 2015][A

[Chazal et al., 2014]

[Adams et al., 2017][A

[Perea et al., 2019][2]

[Royer et al., 2019][A

Kernel-based techniques

Persistence scale-space kernel

Sliced Wasserstein kernel

Persistence-weighted Gaussian kernel

Kernel for multi-parameter persistent homology

[Reininghaus et al., 2014][2]

[Carrière et al., 2017] [A

[Kusano et al., 2016]

[Corbet et al., 2019]

Theoretical results related to metric distortion [Carrière & Bauer, 2019]

† actually an (unsupervised) learning technique

Prior art

Vectorization techniques

Persistence landscapes

Persistence silhouettes

Persistence images

Template functions

ATOL[†]

[Bubenik, 2015][A

[Chazal et al., 2014]

[Adams et al., 2017][A

[Perea et al., 2019][2]

[Royer et al., 2019][A

Kernel-based techniques

Persistence scale-space kernel

Sliced Wasserstein kernel

Persistence-weighted Gaussian kernel

Kernel for multi-parameter persistent homology

[Reininghaus et al., 2014] [A

[Carrière et al., 2017] [A

[Kusano et al., 2016][2]

[Corbet et al., 2019]

Theoretical results related to metric distortion [Carrière & Bauer, 2019]

This is, by far, **not** an exhaustive listing!

† actually an (unsupervised) learning technique

In fact, most vectorization strategies are **task-agnostic!**

Question: Shouldn't the vectorization be informed by the learning task?

In fact, most vectorization strategies are task-agnostic!

Question: Shouldn't the vectorization be informed by the learning task?

This motivates **learnable** vectorization schemes:

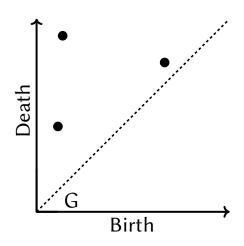
[Hofer et al., 2017,2019] [A., [Carrière et al., 2019] [A.]

In fact, most vectorization strategies are task-agnostic!

Question: Shouldn't the vectorization be informed by the learning task?

This motivates **learnable** vectorization schemes:

[Hofer et al., 2017,2019] [A., [Carrière et al., 2019] [A.]

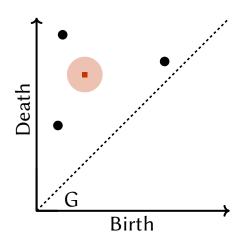


In fact, most vectorization strategies are task-agnostic!

Question: Shouldn't the vectorization be informed by the learning task?

This motivates **learnable** vectorization schemes:

[Hofer et al., 2017,2019] [A., [Carrière et al., 2019] [A.]

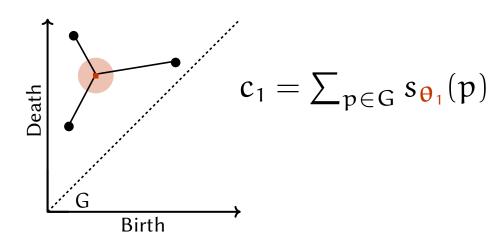


In fact, most vectorization strategies are task-agnostic!

Question: Shouldn't the vectorization be informed by the learning task?

This motivates learnable vectorization schemes:

[Hofer et al., 2017,2019] [A., [Carrière et al., 2019] [A.]

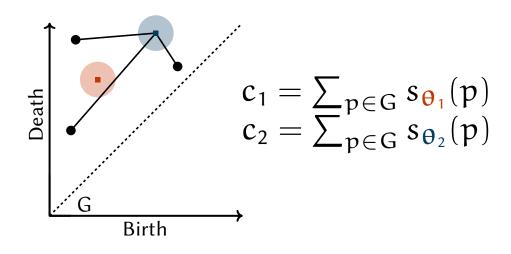


In fact, most vectorization strategies are task-agnostic!

Question: Shouldn't the vectorization be informed by the learning task?

This motivates **learnable** vectorization schemes:

[Hofer et al., 2017,2019] [A., [Carrière et al., 2019] [A.]



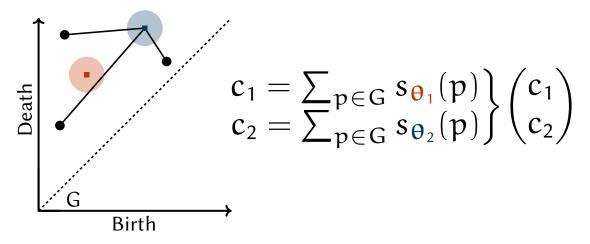
In fact, most vectorization strategies are task-agnostic!

Question: Shouldn't the vectorization be informed by the learning task?

This motivates **learnable** vectorization schemes:

[Hofer et al., 2017,2019] [A., [Carrière et al., 2019] [A.]

Example (for a vectorization into \mathbb{R}^k , k = 2):



In general[†]:
$$G \mapsto \mathcal{V}_{\Theta}(G)$$

 $\Theta = (\theta_1, \theta_2)$

† plus some technicalities to ensure stability

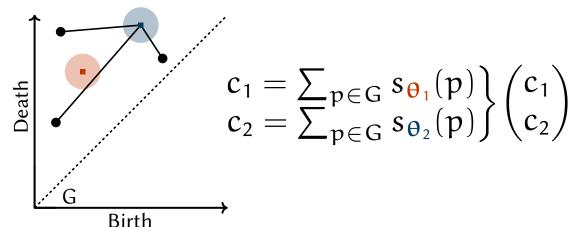
In fact, most vectorization strategies are task-agnostic!

Question: Shouldn't the vectorization be informed by the learning task?

This motivates **learnable** vectorization schemes:

[Hofer et al., 2017,2019] [A., [Carrière et al., 2019] [A.]

Example (for a vectorization into \mathbb{R}^k , k = 2):



In general[†]:
$$G \mapsto \mathcal{V}_{\Theta}(G)$$

 $\Theta = (\theta_1, \theta_2)$

† plus some technicalities to ensure stability

Learnable means that we can optimize the θ_i 's for a given task/criterion!

Overall, this changes

$$F: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto \mathbf{w}^\top \sigma(\mathbf{A}_L \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_1 \mathbf{x}) \cdots))$$

to

$$F: \mathcal{B} \to \mathbb{R}, \quad G \mapsto \boldsymbol{w}^{\top} \sigma(\boldsymbol{A}_{L} \sigma(\boldsymbol{A}_{L-1} \cdots \sigma(\boldsymbol{A}_{1} \boldsymbol{\mathcal{V}}_{\boldsymbol{\Theta}}(\boldsymbol{G})) \cdots))$$

Overall, this changes

$$F: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto \mathbf{w}^\top \sigma(\mathbf{A}_L \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_1 \mathbf{x}) \cdots))$$

to

$$F: \mathcal{B} \to \mathbb{R}, \quad G \mapsto \boldsymbol{w}^{\top} \sigma(\boldsymbol{A}_{L} \sigma(\boldsymbol{A}_{L-1} \cdots \sigma(\boldsymbol{A}_{1} \boldsymbol{\mathcal{V}}_{\boldsymbol{\Theta}}(\boldsymbol{G})) \cdots))$$

Upon the definition of a suitable loss function

$$\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$$

we can compute, for a training sample, (G_i, y_i) , the **parameter update**[†]

$$\Theta^{t+1} = \Theta^t - \eta \frac{\partial \ell(F, (G_i, y_i))}{\partial \Theta}$$

Overall, this changes

$$F: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto \mathbf{w}^\top \sigma(\mathbf{A}_L \sigma(\mathbf{A}_{L-1} \cdots \sigma(\mathbf{A}_1 \mathbf{x}) \cdots))$$

to

$$F: \mathcal{B} \to \mathbb{R}, \quad G \mapsto \boldsymbol{w}^{\top} \sigma(\boldsymbol{A}_{L} \sigma(\boldsymbol{A}_{L-1} \cdots \sigma(\boldsymbol{A}_{1} \boldsymbol{\mathcal{V}}_{\boldsymbol{\Theta}}(\boldsymbol{G})) \cdots))$$

Upon the definition of a suitable loss function

$$\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$$

we can compute, for a training sample, (G_i, y_i) , the **parameter update**[†]

$$\Theta^{t+1} = \Theta^t - \eta \frac{\partial \ell(F, (G_i, y_i))}{\partial \Theta}$$

"Easy" because of automatic differentiaton (e.g., using PyTorch).

Transitioning to learning with PH
In ML, we have, for long, degraded PH to a "fancy" feature extractor.

Transitioning to learning with PH

In ML, we have, for long, degraded PH to a "fancy" feature extractor.

Question: What if we want to **control** topological properties?

Transitioning to learning with PH

In ML, we have, for long, degraded PH to a "fancy" feature extractor.

Question: What if we want to control topological properties?

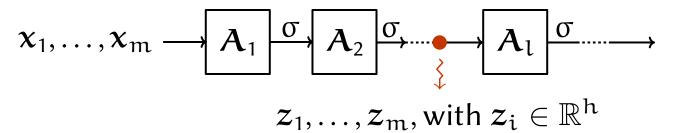
Example:

$$x_1, \ldots, x_m \longrightarrow A_1 \xrightarrow{\sigma} A_2 \xrightarrow{\sigma} \cdots \longrightarrow A_l \xrightarrow{\sigma} \cdots$$

In ML, we have, for long, degraded PH to a "fancy" feature extractor.

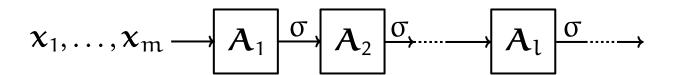
Question: What if we want to control topological properties?

Example:

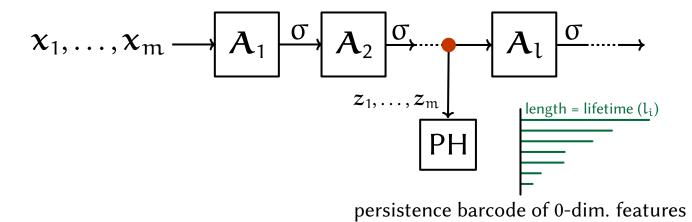


e.g., control the **lifetime** of 0-dim. features (from Vietoris-Rips PH)

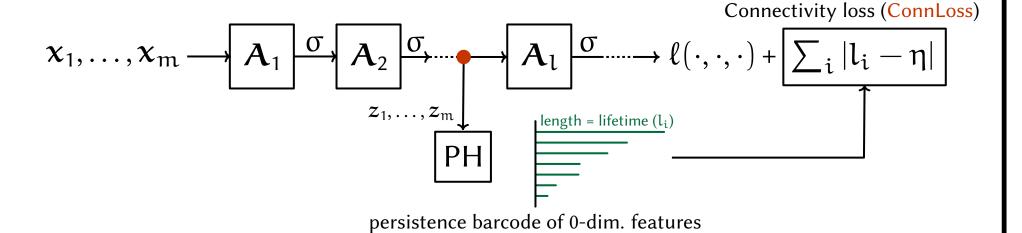
Example (contd.):



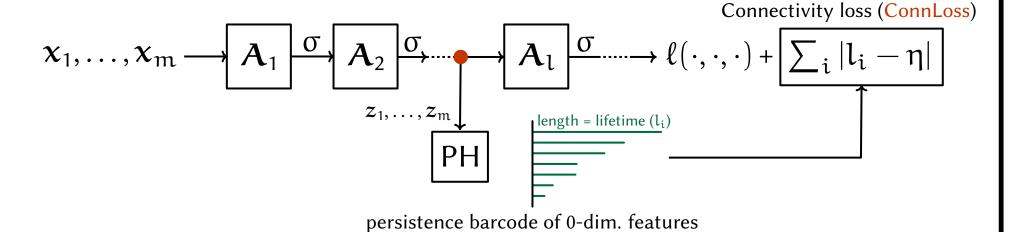
Example (contd.):



Example (contd.):



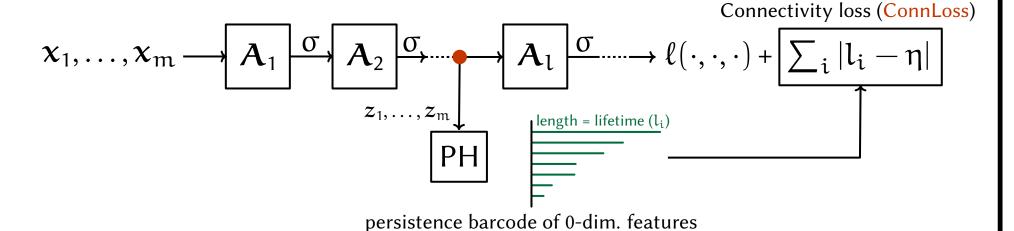
Example (contd.):



Importantly,

 \triangleright the l_i 's depend on the A_i 's (as they influence the z_i 's)

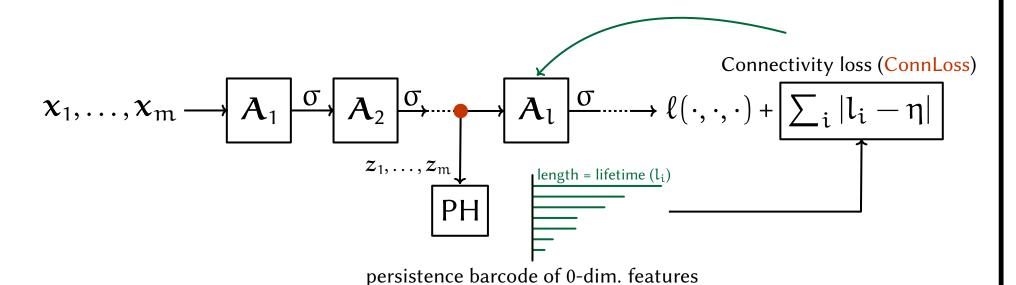
Example (contd.):



Importantly,

- \triangleright the l_i 's depend on the A_i 's (as they influence the z_i 's)
- ▶ minimizing the (joint) loss, requires gradients wrt. all Ai's

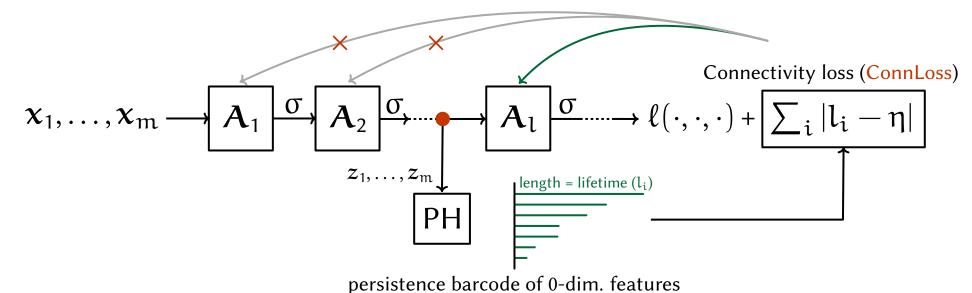
Example (contd.):



Importantly,

- \triangleright the l_i's depend on the A_i 's (as they influence the z_i 's)
- ▶ minimizing the (joint) loss, requires gradients wrt. all Ai's

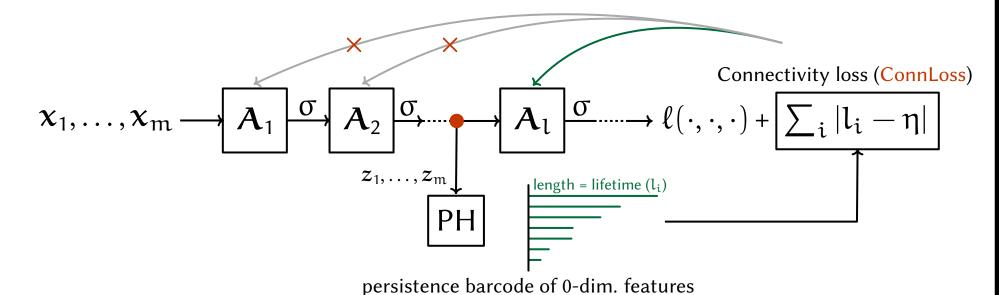
Example (contd.):



Importantly,

- \triangleright the l_i 's depend on the A_i 's (as they influence the z_i 's)
- ▶ minimizing the (joint) loss, requires gradients wrt. all Ai's

Example (contd.):

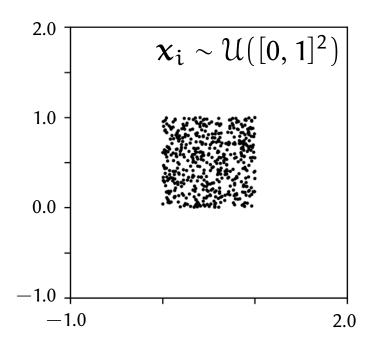


Importantly,

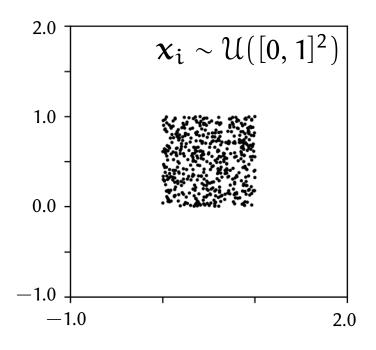
- \triangleright the l_i 's depend on the A_i 's (as they influence the z_i 's)
- \triangleright minimizing the (joint) loss, requires gradients wrt. all A_i 's
- ▶ The good news is that this can be done

[Hofer et al., 2019] [Carrière et al., 2020] [Brüel-Gabrielsson et al., 2019] [A

Lets look at some toy data first.



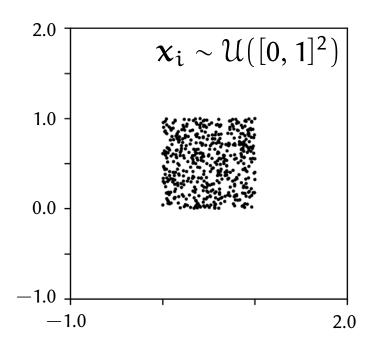
Lets look at some toy data first.



Here's what we aim to do:

- Compute 0-dim. Vietoris-Rips PH
- \triangleright Minimize ConnLoss wrt. the x_i (for a desired $\eta > 0$)

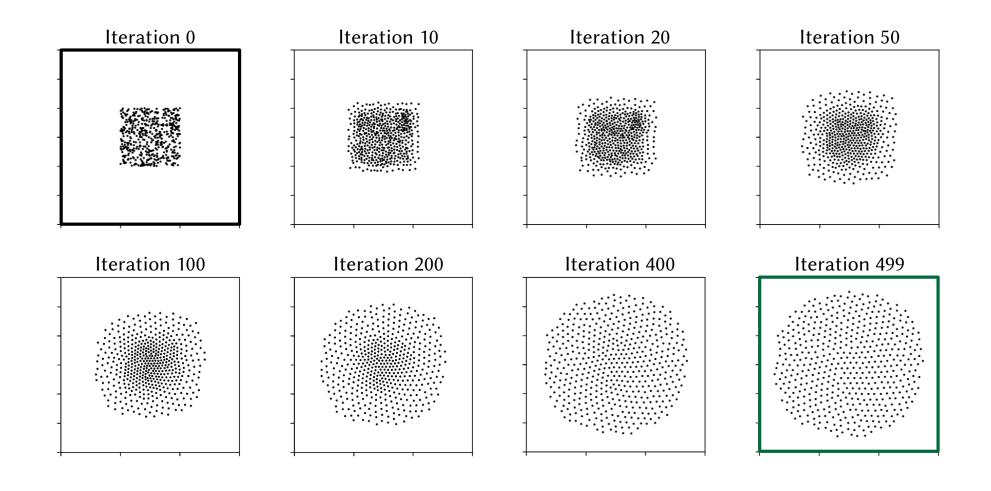
Lets look at some toy data first.



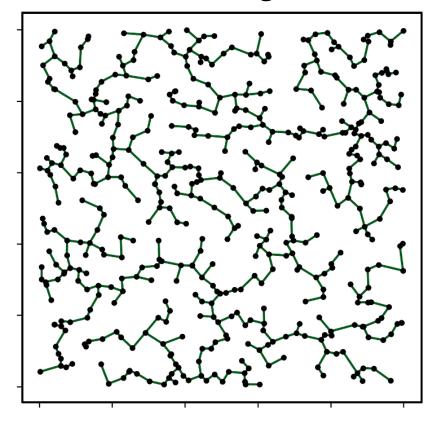
Here's what we aim to do:

- Compute 0-dim. Vietoris-Rips PH
- \triangleright Minimize ConnLoss wrt. the x_i (for a desired $\eta > 0$)

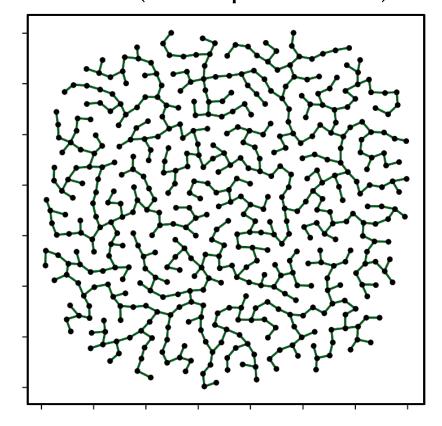
Notably, this controls the **length** of the minimal spanning tree (MST). [Robins, 2000] [A



MST (Original)



MST (after optimization)



Some self-advertisement:)

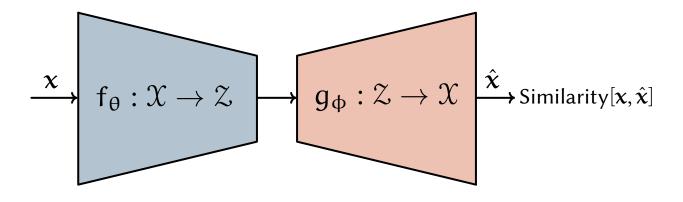
Embedding into the PyTorch framework:

```
import torch
import numpy as np
from torchph.pershom import vr persistence 11
device = "cuda"
toy data = np.random.rand(300, 2)
X = torch.tensor(toy data, device=device, requires grad=True)
opt = torch.optim.Adam([X], lr=0.01)
for i in range(1,100+1):
    pers = vr persistence l1(X, 1, 0)
    h \ 0 = pers[0][0]
    lt = h 0[:, 1] # HO lifetimes
    loss = (lt - 0.1).abs().sum()
    opt.zero grad()
    loss.backward()
    opt.step()
```

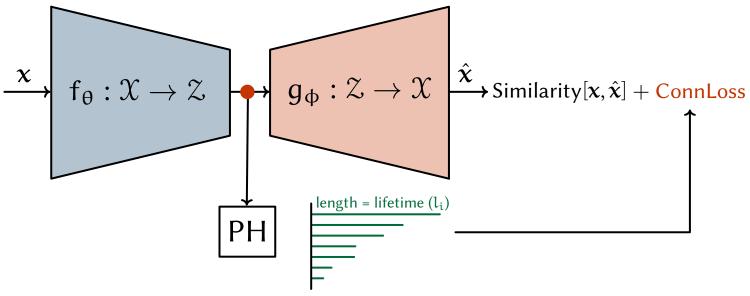
Note that this uses our own PH implementation (works on GPU), see 😱

Why would this be useful?
In [Hofer et al., 2019] , we study ConnLoss with autoencoders.

In [Hofer et al., 2019], we study ConnLoss with autoencoders.

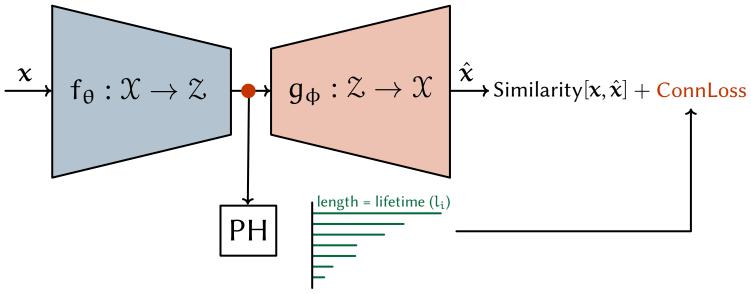


In [Hofer et al., 2019], we study ConnLoss with autoencoders.



persistence barcode of 0-dim. features

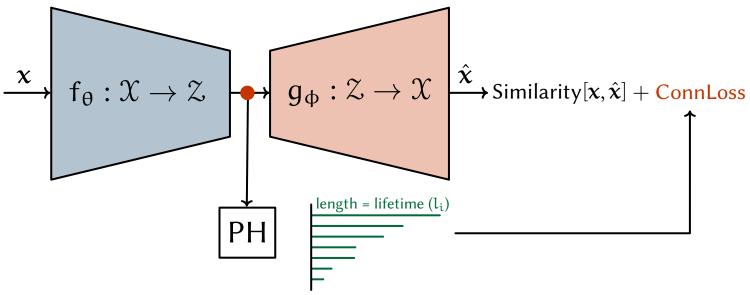
In [Hofer et al., 2019], we study ConnLoss with autoencoders.



persistence barcode of 0-dim. features

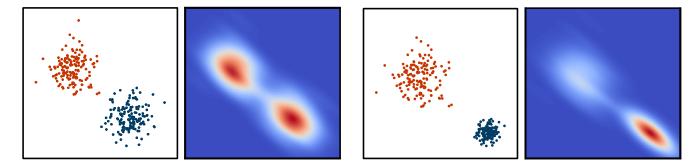
Why? You might want to do kernel density estimation in $\mathfrak{Z}(=\mathbb{R}^n)$

In [Hofer et al., 2019], we study ConnLoss with autoencoders.



persistence barcode of 0-dim. features

Why? You might want to do kernel density estimation in $\mathfrak{Z}(=\mathbb{R}^n)$

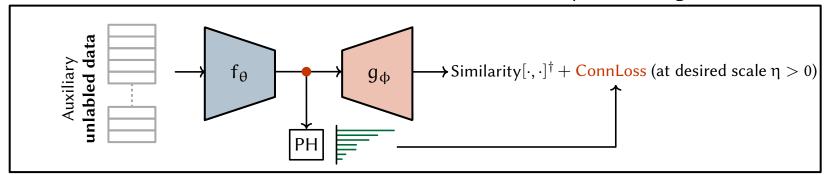


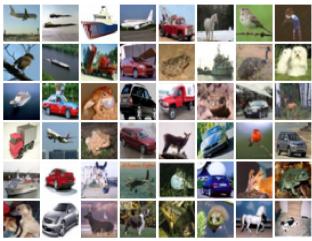
Can be problematic, due to scale differences \rightarrow we can **impose** scale via η

Application: One-class learning

Training (step I)

Trained only once using unlabeled data





CIFAR10 images (32 \times 32 RGB)

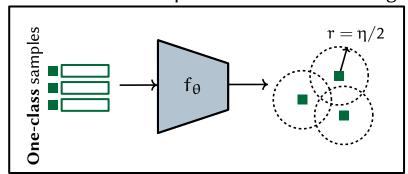
Notably, [Moor et al., 2019] \square follow similar ideas to learn a representation space (\mathbb{Z}) that preserves the input space topology.

† e.g., Similarity $[\cdot, \cdot] \equiv$ mean squared-error (MSE)

Application: One-class learning

Training (step II)

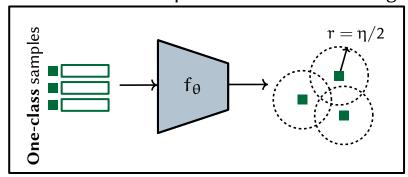
KDE-inspired one-class "learning"



Application: One-class learning

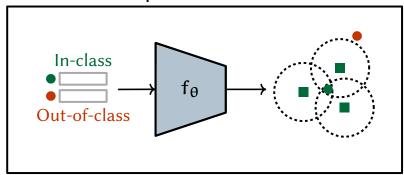
Training (step II)

KDE-inspired one-class "learning"



Evaluation protocol

Computation of a one-class score



Count #samples falling into balls of radius $\eta/2$, anchored at the one-class instances

Application : Topological regularizers								
How about neural classifiers ? [Hofer et al., 2020]								

A		1•	T	1	• 1	1	•	
Δι	nnl	lication	\cdot lor	MAIAG	ICAL R	raguil	2 r170	rc
	UUI	ııcatıvı	· IUL	りしいと	icaii	CEUI	alize	IJ
			l l	\mathcal{O}		\mathcal{O}		

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

How about **neural classifiers**? [Hofer et al., 2020]

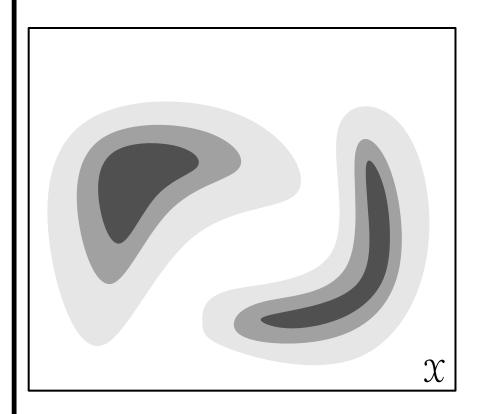
Question: Can we control topological properties for generalization

Key idea: encourage "densification" of learned representations

How about **neural classifiers**? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

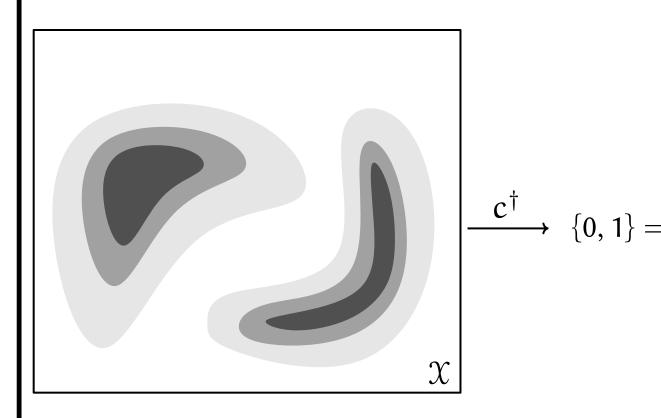
Key idea: encourage "densification" of learned representations



How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage "densification" of learned representations

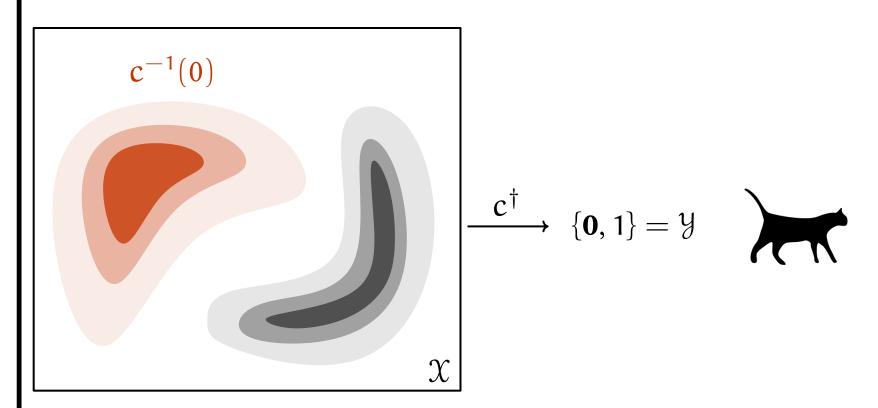


 † c : $\mathfrak{X} \rightarrow \mathfrak{Y}$ is an **unknown** labeling function

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage "densification" of learned representations

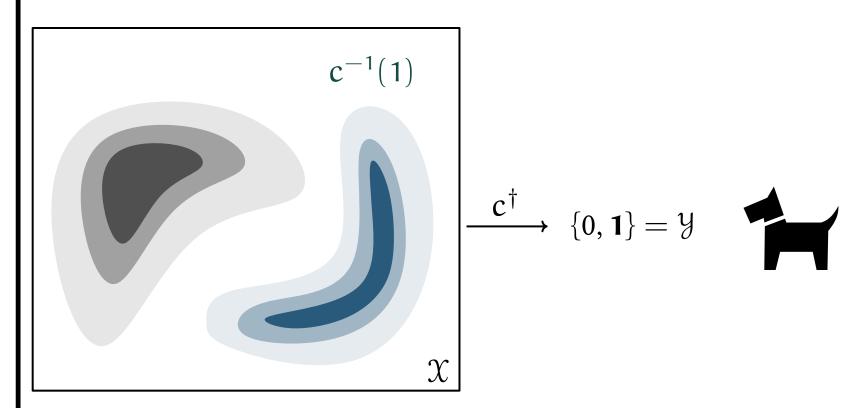


 † $c: \mathcal{X} \rightarrow \mathcal{Y}$ is an **unknown** labeling function

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage "densification" of learned representations

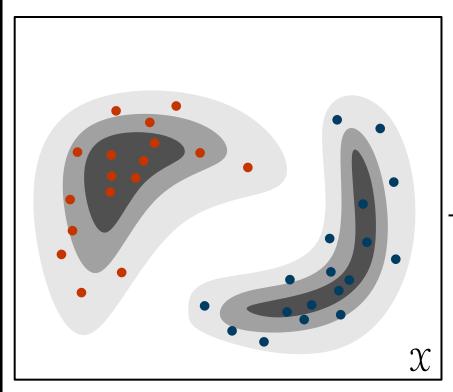


 † $c: \mathcal{X} \rightarrow \mathcal{Y}$ is an **unknown** labeling function

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage "densification" of learned representations



We want to **approximate** c by F

(implemented as a neural network)

 † $c: \mathcal{X} \rightarrow \mathcal{Y}$ is an **unknown** labeling function

One aspect of the **generalization puzzle** in deep learning:

Generalization in spite of memorization

One aspect of the **generalization puzzle** in deep learning:

Generalization in spite of memorization

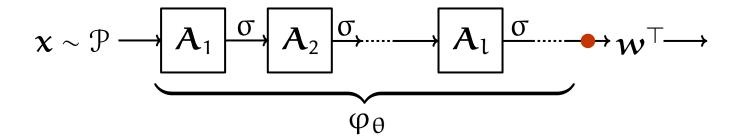
In fact, we can typically fit the training data **without error**, i.e., $L_S(F) = 0$. (even under random labels [Zhang et al., 2017] \square)

One aspect of the **generalization puzzle** in deep learning:

Generalization in spite of memorization

In fact, we can typically fit the training data **without error**, i.e., $L_S(F) = 0$. (even under random labels [Zhang et al., 2017] \square)

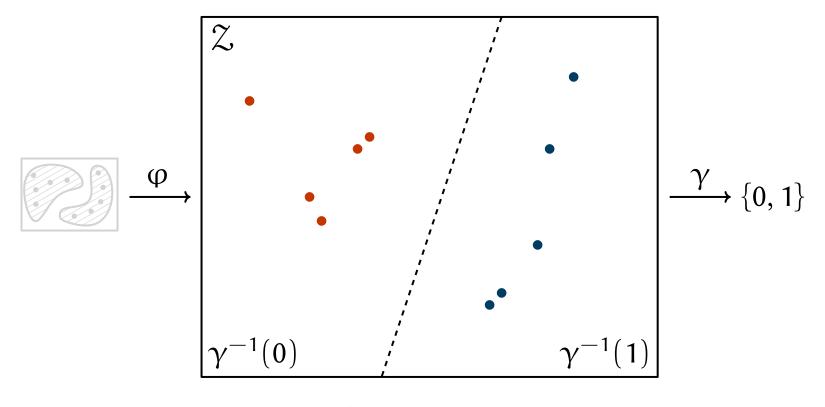
Consider



In [Hofer et al., 2020] \square , we study how the distribution around representations of training samples, $\varphi_*(\mathcal{P})$, affects generalization.

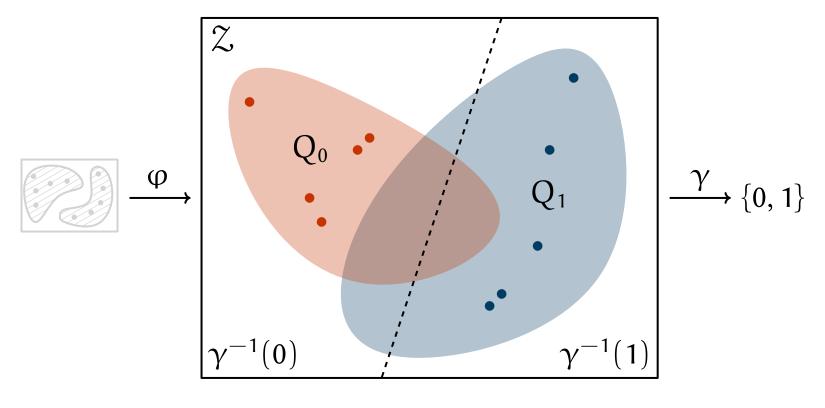
Lets decompose F as $F = \gamma \circ \phi : \mathcal{X} \to \mathcal{Z} \to \mathcal{Y}$ with $\gamma(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^{\top}\mathbf{x})$.

Lets decompose F as $F = \gamma \circ \varphi : \mathcal{X} \to \mathcal{Z} \to \mathcal{Y}$ with $\gamma(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^{\top}\mathbf{x})$.



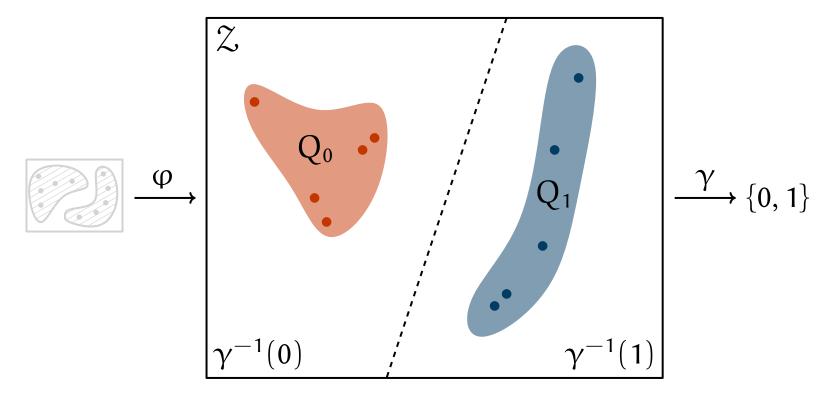
 $\triangleright \mathcal{Z}$ is the **codomain** of φ , $\gamma^{-1}(i)$ the **decision region** of class i

Lets decompose F as $F = \gamma \circ \varphi : \mathcal{X} \to \mathcal{Z} \to \mathcal{Y}$ with $\gamma(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^{\top}\mathbf{x})$.



- \triangleright \mathcal{Z} is the **codomain** of φ , $\gamma^{-1}(i)$ the **decision region** of class i
- \triangleright **Label-wise** distribution, Q_i (restriction of $\phi_*(\mathcal{P})$ to class i), in \mathcal{Z}

Lets decompose F as $F = \gamma \circ \varphi : \mathcal{X} \to \mathcal{Z} \to \mathcal{Y}$ with $\gamma(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^{\top}\mathbf{x})$.



- \triangleright \mathcal{Z} is the **codomain** of φ , $\gamma^{-1}(i)$ the **decision region** of class i
- \triangleright **Label-wise** distribution, Q_i (restriction of $\phi_*(\mathcal{P})$ to class i), in \mathcal{Z}

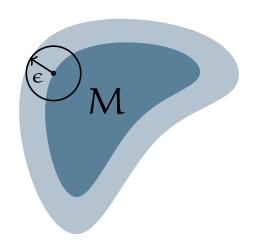
We aim for a **densification** of Q_i via regularization of ϕ .

Application: Topological regularizers		
Lets take a closer look at densification .		

Lets take a closer look at densification.

Consider, for a reference set $M \subset \mathbb{Z}$, its metric extension[†]

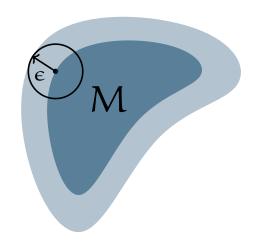
$$M_{\epsilon} = \bigcup_{x \in M} B(x, \epsilon), \quad \epsilon > 0$$



Lets take a closer look at densification.

Consider, for a reference set $M \subset \mathbb{Z}$, its metric extension[†]

$$M_{\epsilon} = \bigcup_{x \in M} B(x, \epsilon), \quad \epsilon > 0$$

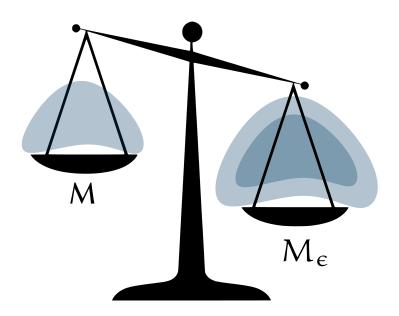


Question: How much mass is in the ϵ -belt?

 † B $(x, \varepsilon) = \{u \in \mathcal{Z} : d(x, u) \leqslant \varepsilon\}$

Informally, densification means:

For a given mass in the reference set M, increase the mass concentrated in its ϵ -extension!



Application : Topological regularizers		
The idea is to exert control over connectivity properties!		

The **idea** is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)[†]:

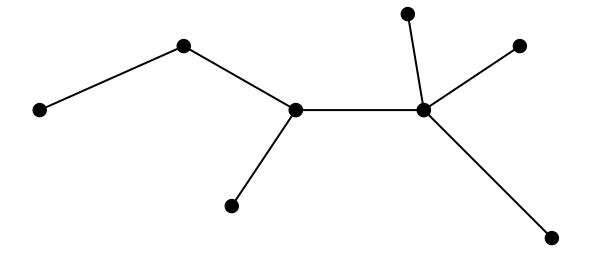
•

• • •

•

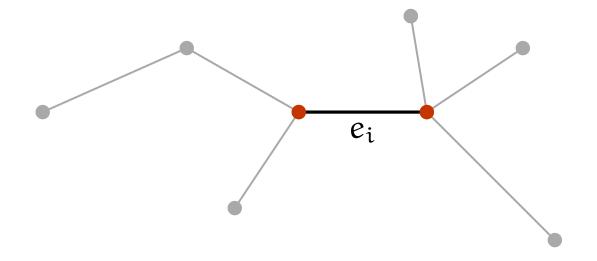
The idea is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)[†]:



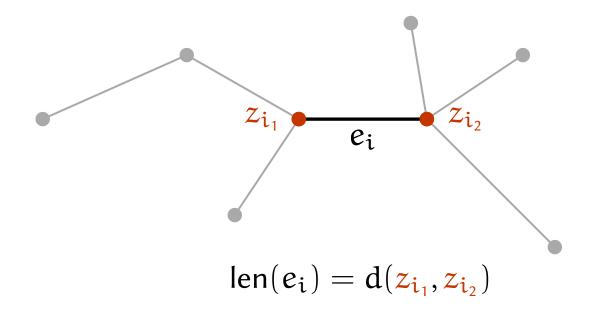
The **idea** is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)[†]:



The **idea** is to exert control over connectivity properties!

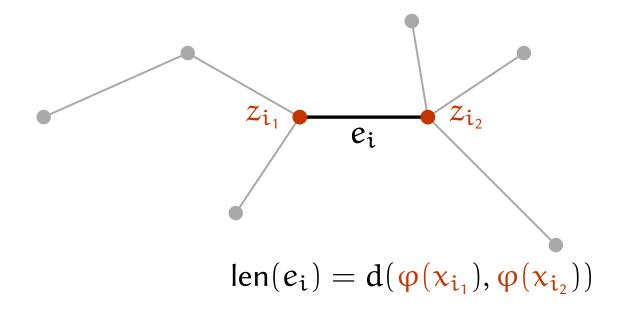
Consider the (Euclidean) minimal spanning tree (MST)[†]:



 $^{\dagger} d(x,y) = \|x - y\|$

The **idea** is to exert control over connectivity properties!

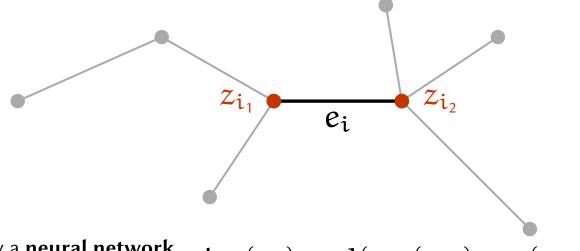
Consider the (Euclidean) minimal spanning tree (MST)[†]:



 $^{\dagger} d(x,y) = \|x - y\|$

The **idea** is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)[†]:

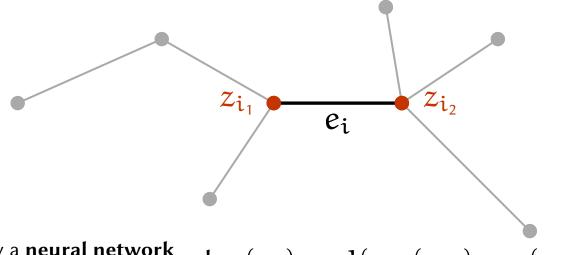


as ϕ is parametrized by a **neural network** with parameters θ

$$\mathsf{len}(e_{\mathfrak{i}}) = d(\phi_{\boldsymbol{\theta}}(x_{\mathfrak{i}_1}), \phi_{\boldsymbol{\theta}}(x_{\mathfrak{i}_2}))$$

The **idea** is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)[†]:



as ϕ is parametrized by a **neural network** with parameters θ

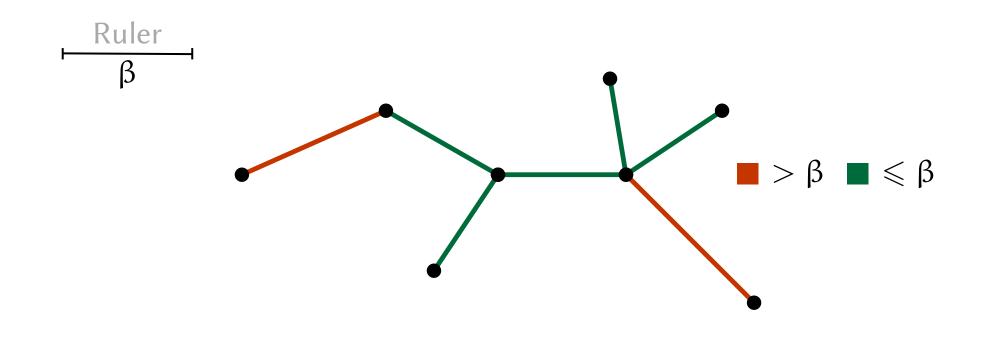
$$len(e_i) = d(\phi_{\theta}(x_{i_1}), \phi_{\theta}(x_{i_2}))$$

Differentiable in θ

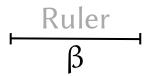
⇒ we can control the **edge lengths** of the MST (as mentioned earlier)

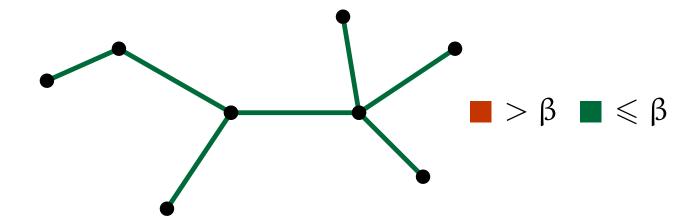
$$^{\dagger} d(x,y) = ||x - y|$$

We call $z_1, ..., z_b \in \mathbb{Z}$ β -connected if all edges in the corresponding MST are not longer than β .

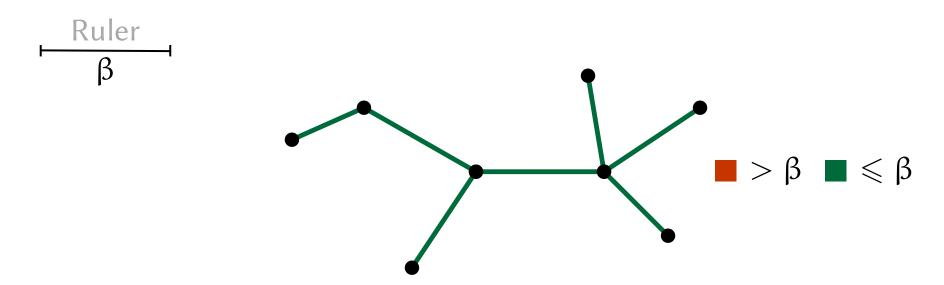


We call $z_1, ..., z_b \in \mathbb{Z}$ β -connected if all edges in the corresponding MST are not longer than β .





We call $z_1, ..., z_b \in \mathbb{Z}$ β -connected if all edges in the corresponding MST are not longer than β .



This allows us to talk about properties of $z_1, \ldots, z_b \sim Q$, i.e., b iid draws from Q.

Let $b \in \mathbb{N}$. We call Q a c_b^{β} -connected distribution if

$$c_b^{\beta} \leqslant Pr[Z_1, \dots, Z_b \text{ are } \beta\text{-connected}]$$

holds for $Z_1, \ldots, Z_b \overset{\text{iid}}{\sim} Q$ with $\beta > 0, c_b^{\beta} > 0$.

Let $b \in \mathbb{N}$. We call Q a c_b^{β} -connected distribution if

$$c_b^{\beta} \leqslant Pr[Z_1, \dots, Z_b \text{are } \beta\text{-connected}]$$

holds for $Z_1,\ldots,Z_b\stackrel{iid}{\sim}Q$ with $\beta>0,$ $c_b^{\beta}>0.$

This is a property of the **product measure** Q^b.

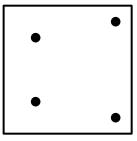
Let $b \in \mathbb{N}$. We call Q a c_b^{β} -connected distribution if

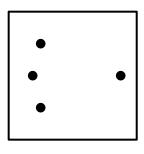
$$c_b^{\beta} \leqslant Pr[Z_1, \dots, Z_b \text{ are } \beta\text{-connected}]$$

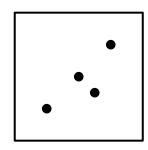
holds for $Z_1,\ldots,Z_b\stackrel{iid}{\sim}Q$ with $\beta>0,$ $c_b^{\beta}>0.$

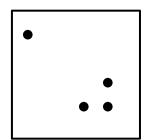
This is a property of the **product measure** Q^b.

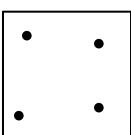
Example: five draws from Q^b with b = 4











not β-connected

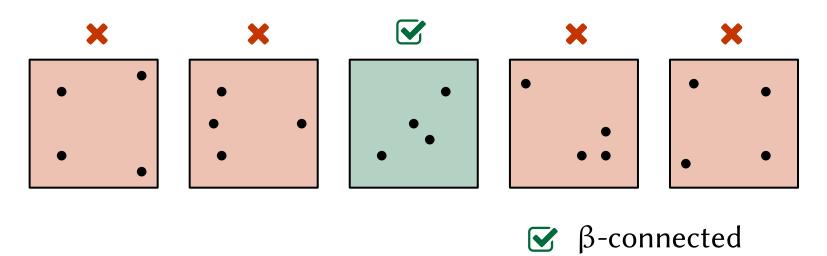
Let $b \in \mathbb{N}$. We call Q a c_b^{β} -connected distribution if

$$c_b^{\beta} \leqslant Pr[Z_1, \dots, Z_b \text{ are } \beta\text{-connected}]$$

holds for $Z_1,\ldots,Z_b\stackrel{\text{iid}}{\sim}Q$ with $\beta>0,\,c_b^{\,\beta}>0.$

This is a property of the **product measure** Q^b.

Example: five draws from Q^b with b = 4



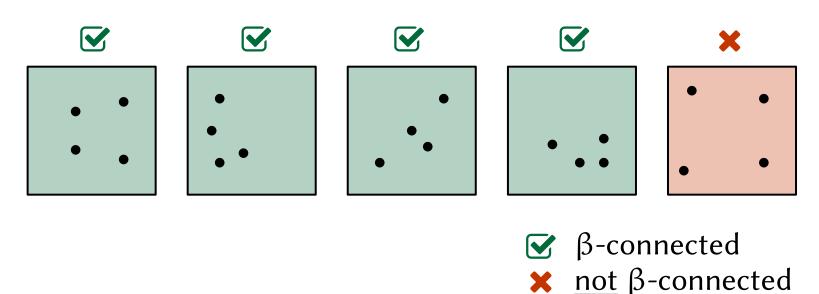
Let $b \in \mathbb{N}$. We call Q a c_b^{β} -connected distribution if

$$c_b^{\beta} \leqslant Pr[Z_1, \dots, Z_b \text{ are } \beta\text{-connected}]$$

holds for $Z_1,\ldots,Z_b\stackrel{\text{iid}}{\sim}Q$ with $\beta>0,\,c_b^{\,\beta}>0.$

This is a property of the **product measure** Q^b.

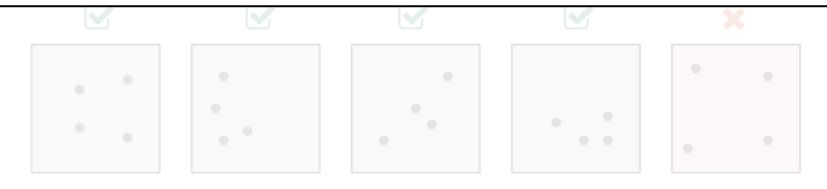
Example: five draws from Q^b with b = 4



Let $b \in \mathbb{N}$. We call Q a c_b^β -connected distribution if $c_b^\beta \leqslant \text{Pr}[Z_1, \dots, Z_b \text{are } \beta\text{-connected}]$

holds for
$$Z_1, \ldots, Z_b \stackrel{\text{iid}}{\sim} Q$$
 with $\beta > 0, c_b^{\beta} > 0$

- **1**. We can show that controlling connectivity properties $(\beta$ -connectedness) of Q^b leads to densification of Q.
- 2. We can show that densification directly relates to generalization.



Some results for a neural classifier[‡] on **MNIST** (10 classes) in a **small sample-size** regime (250 samples):

$$7.1 + / - 1.0$$

[‡] using a mid-size convolutional neural network (CNN13)

Some results for a neural classifier[‡] on MNIST (10 classes) in a small sample-size regime (250 samples):

Vanilla	7.1 +/- 1.0
+ Jacobian reg.	6.2 +/- 0.8
+ DeCov	6.5 + / - 1.1
+ VR	6.1 +/- 0.5
+ cw-CR	7.0 +/- 0.6
+ cw-VR	6.2 +/- 0.8

[‡] using a mid-size convolutional neural network (CNN13)

Some results for a neural classifier[‡] on MNIST (10 classes) in a small sample-size regime (250 samples):

Vanilla	7.1 +/- 1.0
+ Jacobian reg.	6.2 +/- 0.8
+ DeCov	6.5 +/- 1.1
+ VR	6.1 +/- 0.5
+ cw-CR	7.0 +/- 0.6
+ cw-VR	6.2 +/- 0.8
+ ConnLoss (best)	5.6 +/- 0.7
+ ConnLoss [†]	5.9 +/- 0.3

 $^{^{\}dagger}\beta$ chosen via cross-validation on a small validation set

[‡] using a mid-size convolutional neural network (CNN13)

Some results for a neural classifier[‡] on **CIFAR10** (10 classes) in a **small sample-size** regime (500 samples):

Vanilla

39.4 +/- 1.5

[‡] using a mid-size convolutional neural network (CNN13)

Some results for a neural classifier[‡] on **CIFAR10** (10 classes) in a **small sample-size** regime (500 samples):

Vanilla	39.4 +/- 1.5
+ Jacobian reg.	39.7 +/- 2.0
+ DeCov	38.2 +/- 1.5
+ VR	38.6 +/- 1.4
+ cw-CR	39.0 +/- 1.9
+ cw-VR	38.5 +/- 1.6

[‡] using a mid-size convolutional neural network (CNN13)

Some results for a neural classifier[‡] on **CIFAR10** (10 classes) in a **small sample-size** regime (500 samples):

Vanilla	39.4 +/- 1.5
+ Jacobian reg.	39.7 +/- 2.0
+ DeCov	38.2 +/- 1.5
+ VR	38.6 +/- 1.4
+ cw-CR	39.0 +/- 1.9
+ cw-VR	38.5 +/- 1.6
+ ConnLoss (best)	36.5 +/- 1.2
+ ConnLoss [†]	36.8 +/- 0.3

[†]β chosen via cross-validation on a small validation set

[‡] using a mid-size convolutional neural network (CNN13)

What's ahead of us?

There is so much exciting stuff that is going on right now!

Here are **some examples** ...

- ▷ Theory for for optimizing PH-based functions [Carrière et al., 2020]
- ▷ Studying learning behavior of neural networks [Rieck et al., 2018]
- ▷ PH for learning with graphs [Hofer et al., 2019; Rieck et al. 2021] [[]
- □ Using simplicial complexes for message passing [Bodnar et al., 2021]
 □
- ▷ Differentiable topology layers [Brüel-Gabrielsson et al., 2019]
- ▷ Topological attention for time-series forecasting [Zeng et al., 2021]
- ▶ Topology-preserving image segmentation [Hu et al., 2019]
- ▷ Topological regularization of decision boundaries [Chen et al., 2019] [2]

Again, this is, by far, **not** an exhaustive listing!

What I (personally) find interesting

Continuing work along the lines of [Bianchini & Scarselli, 2014], i.e., using concepts from topology to study **hypothesis set complexity**.

see also [Ramamurthy et al., 2019] [A [Guss & Salakhutdinov, 2018] [A]

What I (personally) find interesting

Continuing work along the lines of [Bianchini & Scarselli, 2014], i.e., using concepts from topology to study **hypothesis set complexity**.

see also [Ramamurthy et al., 2019] [A [Guss & Salakhutdinov, 2018] [A]

Can we possibly come up with other/better measures of quantifying hypothesis set complexity (similar to VC-dim., or Rademacher complexity)?

What I (personally) find interesting

Continuing work along the lines of [Bianchini & Scarselli, 2014], i.e., using concepts from topology to study **hypothesis set complexity**.

see also [Ramamurthy et al., 2019] [A [Guss & Salakhutdinov, 2018] [A]

Can we possibly come up with other/better measures of quantifying hypothesis set complexity (similar to VC-dim., or Rademacher complexity)?

With differentiable layers for NN's that compute PH, we have a great tool – but, we do not really know what to do with it (yet).

Collaborators

Marc Niethammer UNC Chapel Hill @MarcNiethammer

Ulrich Bauer TUM

Jan Reininghaus
IST Austria (back then)

Florian Graf Univ. Salzburg

Bastian Rieck ETH @Pseudomanifold

Chris Hofer Univ. Salzburg

Thank You!

