
Learning from and with persistent homology
Roland Kwitt

Thematic Mini-Conference on Computational Topology & Machine Learning, September 2021

Note: All references marked are clickable!

� http://rkwitt.org

7 @rkwitt1982

http://rkwitt.org

Talk outline

▷ Quick recap of the learning framework (supervised learning)

▷ Neural networks

▷ Learning from persistent homology

▷ Learning with persistent homology

Problem setting (of supervised learning)

Domain set X (e.g., Rd)

Label set Y (e.g., {0, 1})

Hypothesis class H

Distribution over domain & labels (xi,yi) ∼ P

Training data S = ((x1,y1), . . . , (xm,ym)) ∼ Pm

Problem setting (of supervised learning)

Domain set X (e.g., Rd)

Label set Y (e.g., {0, 1})

Hypothesis class H

Distribution over domain & labels (xi,yi) ∼ P

Training data S = ((x1,y1), . . . , (xm,ym)) ∼ Pm

A learner (upon receiving training data) needs to output a hypothesis

H ∋ h : X → Y

Problem setting (of supervised learning)

Domain set X (e.g., Rd)

Label set Y (e.g., {0, 1})

Hypothesis class H

Distribution over domain & labels (xi,yi) ∼ P

Training data S = ((x1,y1), . . . , (xm,ym)) ∼ Pm

A learner (upon receiving training data) needs to output a hypothesis

H ∋ h : X → Y

Such a hypothesis should have small risk, defined as

LP(h) = Pr(x,y)∼P[h(x) ̸= y]

Problem setting (of supervised learning)

However, we can only measure the empirical risk

LS(h) =
|i∈{1,...,m}:h(xi) ̸=yi|

m

Problem setting (of supervised learning)

However, we can only measure the empirical risk

LS(h) =
|i∈{1,...,m}:h(xi) ̸=yi|

m

Classic learning paradigm: minimize empirical risk

h ∈ argminh∈H LS(h)

Problem setting (of supervised learning)

However, we can only measure the empirical risk

LS(h) =
|i∈{1,...,m}:h(xi) ̸=yi|

m

Classic learning paradigm: minimize empirical risk

h ∈ argminh∈H LS(h)

Example:

X = Rd,Y = {+1,−1}

H = {x 7→ sgn⟨x,w⟩ : w ∈ Rd}

w

(aka halfspace classifiers)

Problem setting (of supervised learning)

An important aspect is that, typically, inputs are of fixed size!

Problem setting (of supervised learning)

An important aspect is that, typically, inputs are of fixed size!

Other types of data, such as

▷ sets,

▷ multi-sets,

▷ graphs, or

▷ point clouds

are (or were) – lets put it this way – more challenging to handle!

Problem setting (of supervised learning)

An important aspect is that, typically, inputs are of fixed size!

Other types of data, such as

▷ sets,

▷ multi-sets,

▷ graphs, or

▷ point clouds

are (or were) – lets put it this way – more challenging to handle!

General recipe: Find a reasonable way to vectorize!

Neural networks

Typical (feed-forward) neural networks compose maps of the form

f : Rd → Re

x 7→ σ(Ax)

i.e., a linear map A, followed by a (component-wise) activation, e.g.,

Rectified Linear Unit (ReLU)

here: σ(x) = max{0, x}

x

σ : R → R

Neural networks

Typical (feed-forward) neural networks compose maps of the form

f : Rd → Re

x 7→ σ(Ax)

i.e., a linear map A, followed by a (component-wise) activation, e.g.,

Rectified Linear Unit (ReLU)

Composition of such “building blocks” gives

i.e., the hypothesis class is parametrized by (A1, . . . ,AL,w).

here: σ(x) = max{0, x}

x

σ : R → R

F : Rd → R
x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))

Barcodes as input?

So, what if the input, x, to

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))

Barcodes as input?

So, what if the input, x, to

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))

is now a persistence barcode, G, i.e., a multi-set of (birth, death) tuple?

Barcodes as input?

So, what if the input, x, to

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))

is now a persistence barcode, G, i.e., a multi-set of (birth, death) tuple?

Barcodes as input?

So, what if the input, x, to

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))

is now a persistence barcode, G, i.e., a multi-set of (birth, death) tuple?

Question: How can we deal with this?

Barcodes as input?

So, what if the input, x, to

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))

A pragmatic approach [Bendich et al., 2014] :

take the lengths of the N-longest bars→ gives a N-dim. vectorization



is now a persistence barcode, G, i.e., a multi-set of (birth, death) tuple?

Question: How can we deal with this?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026243/

Barcodes as input?

So, what if the input, x, to

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))

A pragmatic approach [Bendich et al., 2014] :

take the lengths of the N-longest bars→ gives a N-dim. vectorization

Well, it would be desirable to preserve stability wrt. dB, dWp,q .



Question: Why should we care about “how” we vectorize?

is now a persistence barcode, G, i.e., a multi-set of (birth, death) tuple?

Question: How can we deal with this?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026243/

Prior art

Vectorization techniques
Persistence landscapes [Bubenik, 2015]
Persistence silhouettes [Chazal et al., 2014]
Persistence images [Adams et al., 2017]
Template functions [Perea et al., 2019]
ATOL† [Royer et al., 2019]

† actually an (unsupervised) learning technique











jmlr.org/papers/volume16/bubenik15a/bubenik15a.pdf
https://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/cflrw-scpls-14/cflrw-scpls-14.pdf
https://jmlr.org/papers/volume18/16-337/16-337.pdf
https://hal.archives-ouvertes.fr/hal-02296513v2/document
https://arxiv.org/abs/1902.07190

Prior art

Vectorization techniques
Persistence landscapes [Bubenik, 2015]
Persistence silhouettes [Chazal et al., 2014]
Persistence images [Adams et al., 2017]
Template functions [Perea et al., 2019]
ATOL† [Royer et al., 2019]

Kernel-based techniques
Persistence scale-space kernel [Reininghaus et al., 2014]
Sliced Wasserstein kernel [Carrière et al., 2017]
Persistence-weighted Gaussian kernel [Kusano et al., 2016]
Kernel for multi-parameter persistent homology [Corbet et al., 2019]
Theoretical results related to metric distortion [Carrière & Bauer, 2019]

† actually an (unsupervised) learning technique





















jmlr.org/papers/volume16/bubenik15a/bubenik15a.pdf
https://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/cflrw-scpls-14/cflrw-scpls-14.pdf
https://jmlr.org/papers/volume18/16-337/16-337.pdf
https://hal.archives-ouvertes.fr/hal-02296513v2/document
https://openaccess.thecvf.com/content_cvpr_2015/papers/Reininghaus_A_Stable_Multi-Scale_2015_CVPR_paper.pdf
http://proceedings.mlr.press/v70/carriere17a/carriere17a.pdf
https://www.jmlr.org/papers/volume18/17-317/17-317.pdf
https://arxiv.org/abs/1809.10231
https://arxiv.org/pdf/1806.06924.pdf
https://arxiv.org/abs/1902.07190

Prior art

Vectorization techniques
Persistence landscapes [Bubenik, 2015]
Persistence silhouettes [Chazal et al., 2014]
Persistence images [Adams et al., 2017]
Template functions [Perea et al., 2019]
ATOL† [Royer et al., 2019]

Kernel-based techniques
Persistence scale-space kernel [Reininghaus et al., 2014]
Sliced Wasserstein kernel [Carrière et al., 2017]
Persistence-weighted Gaussian kernel [Kusano et al., 2016]
Kernel for multi-parameter persistent homology [Corbet et al., 2019]
Theoretical results related to metric distortion [Carrière & Bauer, 2019]

This is, by far, not an exhaustive listing! † actually an (unsupervised) learning technique





















jmlr.org/papers/volume16/bubenik15a/bubenik15a.pdf
https://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/cflrw-scpls-14/cflrw-scpls-14.pdf
https://jmlr.org/papers/volume18/16-337/16-337.pdf
https://hal.archives-ouvertes.fr/hal-02296513v2/document
https://openaccess.thecvf.com/content_cvpr_2015/papers/Reininghaus_A_Stable_Multi-Scale_2015_CVPR_paper.pdf
http://proceedings.mlr.press/v70/carriere17a/carriere17a.pdf
https://www.jmlr.org/papers/volume18/17-317/17-317.pdf
https://arxiv.org/abs/1809.10231
https://arxiv.org/pdf/1806.06924.pdf
https://arxiv.org/abs/1902.07190

Can we obtain task-optimal vectorizations?

In fact, most vectorization strategies are task-agnostic!

Question: Shouldn’t the vectorization be informed by the learning task?

Can we obtain task-optimal vectorizations?

In fact, most vectorization strategies are task-agnostic!

This motivates learnable vectorization schemes:
[Hofer et al., 2017,2019] , [Carrière et al., 2019] 

Question: Shouldn’t the vectorization be informed by the learning task?

https://jmlr.org/papers/v20/18-358.html
http://proceedings.mlr.press/v108/carriere20a/carriere20a.pdf

Can we obtain task-optimal vectorizations?

In fact, most vectorization strategies are task-agnostic!

This motivates learnable vectorization schemes:
[Hofer et al., 2017,2019] , [Carrière et al., 2019] 

Example (for a vectorization into Rk,k = 2):

Birth

D
ea
th

G

Question: Shouldn’t the vectorization be informed by the learning task?

https://jmlr.org/papers/v20/18-358.html
http://proceedings.mlr.press/v108/carriere20a/carriere20a.pdf

Can we obtain task-optimal vectorizations?

In fact, most vectorization strategies are task-agnostic!

This motivates learnable vectorization schemes:
[Hofer et al., 2017,2019] , [Carrière et al., 2019] 

Example (for a vectorization into Rk,k = 2):

Birth

D
ea
th

G

Question: Shouldn’t the vectorization be informed by the learning task?

https://jmlr.org/papers/v20/18-358.html
http://proceedings.mlr.press/v108/carriere20a/carriere20a.pdf

Can we obtain task-optimal vectorizations?

In fact, most vectorization strategies are task-agnostic!

This motivates learnable vectorization schemes:

c1 =
∑

p∈G sθ1(p)

[Hofer et al., 2017,2019] , [Carrière et al., 2019] 

Example (for a vectorization into Rk,k = 2):

Birth

D
ea
th

G

Question: Shouldn’t the vectorization be informed by the learning task?

https://jmlr.org/papers/v20/18-358.html
http://proceedings.mlr.press/v108/carriere20a/carriere20a.pdf

Can we obtain task-optimal vectorizations?

In fact, most vectorization strategies are task-agnostic!

This motivates learnable vectorization schemes:

c1 =
∑

p∈G sθ1(p)

[Hofer et al., 2017,2019] , [Carrière et al., 2019] 

Example (for a vectorization into Rk,k = 2):

Birth

D
ea
th

G

c2 =
∑

p∈G sθ2(p)

Question: Shouldn’t the vectorization be informed by the learning task?

https://jmlr.org/papers/v20/18-358.html
http://proceedings.mlr.press/v108/carriere20a/carriere20a.pdf

Can we obtain task-optimal vectorizations?

In fact, most vectorization strategies are task-agnostic!

This motivates learnable vectorization schemes:

c1 =
∑

p∈G sθ1(p)
}

[Hofer et al., 2017,2019] , [Carrière et al., 2019] 

Example (for a vectorization into Rk,k = 2):

Birth

D
ea
th

G

c2 =
∑

p∈G sθ2(p)
In general†: G 7→ VΘ(G)

(
c1
c2

)
Θ = (θ1,θ2)

† plus some technicalities to ensure stability

Question: Shouldn’t the vectorization be informed by the learning task?

https://jmlr.org/papers/v20/18-358.html
http://proceedings.mlr.press/v108/carriere20a/carriere20a.pdf

Can we obtain task-optimal vectorizations?

In fact, most vectorization strategies are task-agnostic!

This motivates learnable vectorization schemes:

c1 =
∑

p∈G sθ1(p)
}

Learnable means that we can optimize the θi’s for a given task/criterion!

[Hofer et al., 2017,2019] , [Carrière et al., 2019] 

Example (for a vectorization into Rk,k = 2):

Birth

D
ea
th

G

c2 =
∑

p∈G sθ2(p)
In general†: G 7→ VΘ(G)

(
c1
c2

)
Θ = (θ1,θ2)

† plus some technicalities to ensure stability

Question: Shouldn’t the vectorization be informed by the learning task?

https://jmlr.org/papers/v20/18-358.html
http://proceedings.mlr.press/v108/carriere20a/carriere20a.pdf

Can we obtain task-optimal vectorizations?

Overall, this changes

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))
to

F : B → R, G 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1VΘ(G)) · · ·))

† and, obviously for all Ai’s as well

Can we obtain task-optimal vectorizations?

Overall, this changes

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))
to

F : B → R, G 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1VΘ(G)) · · ·))

Upon the definition of a suitable loss function

ℓ : H × X× Y → R

we can compute, for a training sample, (Gi,yi), the parameter update†

Θt+1 = Θt − η
∂ℓ(F, (Gi,yi))

∂Θ

† and, obviously for all Ai’s as well

Can we obtain task-optimal vectorizations?

Overall, this changes

F : Rd → R, x 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1x) · · ·))
to

F : B → R, G 7→ w⊤σ(ALσ(AL−1 · · ·σ(A1VΘ(G)) · · ·))

Upon the definition of a suitable loss function

ℓ : H × X× Y → R

we can compute, for a training sample, (Gi,yi), the parameter update†

“Easy” because of automatic differentiaton (e.g., using PyTorch).

Θt+1 = Θt − η
∂ℓ(F, (Gi,yi))

∂Θ

† and, obviously for all Ai’s as well

Transitioning to learning with PH

In ML, we have, for long, degraded PH to a “fancy” feature extractor.

Transitioning to learning with PH

In ML, we have, for long, degraded PH to a “fancy” feature extractor.

Question: What if we want to control topological properties?

Transitioning to learning with PH

In ML, we have, for long, degraded PH to a “fancy” feature extractor.

Question: What if we want to control topological properties?

Example:

A1 A2 Al
σ σx1, . . . , xm σ

Transitioning to learning with PH

In ML, we have, for long, degraded PH to a “fancy” feature extractor.

Question: What if we want to control topological properties?

Example:

A1 A2 Al
σ σ

z1, . . . , zm, with zi ∈ Rh

x1, . . . , xm

e.g., control the lifetime of 0-dim. features (from Vietoris-Rips PH)

σ

⇝

Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

PH

persistence barcode of 0-dim. features

length = lifetime (li)
z1, . . . , zm

Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)
∑

i |li − η|

z1, . . . , zm

Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)
∑

i |li − η|

Importantly,

z1, . . . , zm

Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)

▷ minimizing the (joint) loss, requires gradients wrt. all Ai’s

∑
i |li − η|

Importantly,

z1, . . . , zm

Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)

▷ minimizing the (joint) loss, requires gradients wrt. all Ai’s

∑
i |li − η|

Importantly,

z1, . . . , zm

Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)

▷ minimizing the (joint) loss, requires gradients wrt. all Ai’s

∑
i |li − η|

Importantly,

z1, . . . , zm

Transitioning to learning with PH

Example (contd.):

A1 A2 Al
σ σx1, . . . , xm σ

▷ the li’s depend on the Ai’s (as they influence the zi’s)

PH

persistence barcode of 0-dim. features

length = lifetime (li)

Connectivity loss (ConnLoss)

+ℓ(·, ·, ·)

▷ minimizing the (joint) loss, requires gradients wrt. all Ai’s
▷ The good news is that this can be done

∑
i |li − η|

Importantly,

 [Carrière et al., 2020][Hofer et al., 2019] 

z1, . . . , zm

[Brüel-Gabrielsson et al., 2019]

https://arxiv.org/pdf/1906.09003.pdf
http://proceedings.mlr.press/v119/hofer20a.html
https://arxiv.org/abs/1905.12200

Transitioning to learning with PH

Lets look at some toy data first.
2.0

0.0

1.0

−1.0
−1.0 2.0

xi ∼ U([0, 1]2)

Transitioning to learning with PH

Lets look at some toy data first.

▷ Compute 0-dim. Vietoris-Rips PH

▷ Minimize ConnLoss wrt. the xi (for a desired η > 0)

Here’s what we aim to do:

2.0

0.0

1.0

−1.0
−1.0 2.0

xi ∼ U([0, 1]2)

Transitioning to learning with PH

Lets look at some toy data first.

Notably, this controls the length of the minimal spanning tree (MST).

▷ Compute 0-dim. Vietoris-Rips PH

▷ Minimize ConnLoss wrt. the xi (for a desired η > 0)

Here’s what we aim to do:

2.0

0.0

1.0

−1.0
−1.0 2.0

xi ∼ U([0, 1]2)

[Robins, 2000]

https://people.physics.anu.edu.au/~vbr110/thesis/

Transitioning to learning with PH

Iteration 0 Iteration 10 Iteration 20 Iteration 50

Iteration 100 Iteration 200 Iteration 400 Iteration 499

Transitioning to learning with PH

MST (Original) MST (after optimization)

Some self-advertisement :)

Embedding into the PyTorch framework:

Note that this uses our own PH implementation (works on GPU), see�

https://c-hofer.github.io/torchph/index.html

Why would this be useful?

In [Hofer et al., 2019] , we study ConnLoss with autoencoders.

https://arxiv.org/pdf/1906.09003.pdf

Why would this be useful?

In [Hofer et al., 2019] , we study ConnLoss with autoencoders.

x̂x
fθ : X → Z gϕ : Z → X Similarity[x, x̂]

https://arxiv.org/pdf/1906.09003.pdf

Why would this be useful?

In [Hofer et al., 2019] , we study ConnLoss with autoencoders.

x̂x
fθ : X → Z gϕ : Z → X Similarity[x, x̂]

PH

persistence barcode of 0-dim. features

length = lifetime (li)

+ ConnLoss

https://arxiv.org/pdf/1906.09003.pdf

Why would this be useful?

In [Hofer et al., 2019] , we study ConnLoss with autoencoders.

Why? You might want to do kernel density estimation in Z(= Rn)

x̂x
fθ : X → Z gϕ : Z → X Similarity[x, x̂]

PH

persistence barcode of 0-dim. features

length = lifetime (li)

+ ConnLoss

https://arxiv.org/pdf/1906.09003.pdf

Why would this be useful?

In [Hofer et al., 2019] , we study ConnLoss with autoencoders.

Why? You might want to do kernel density estimation in Z(= Rn)

x̂x
fθ : X → Z gϕ : Z → X Similarity[x, x̂]

Can be problematic, due to scale differences → we can impose scale via η

PH

persistence barcode of 0-dim. features

length = lifetime (li)

+ ConnLoss

https://arxiv.org/pdf/1906.09003.pdf

Application: One-class learning

Training (step I)

Similarity[·, ·]†+ ConnLoss (at desired scale η > 0)

A
ux
ili
ar
y

un
la
bl
ed

da
ta
Trained only once using unlabeled data

fθ gϕ

† e.g.,Similarity[·, ·] ≡ mean squared-error (MSE)

PH

CIFAR10 images (32× 32 RGB)

Notably, [Moor et al., 2019] follow similar ideas to learn a representation
space (Z) that preserves the input space topology.



http://proceedings.mlr.press/v119/moor20a.html

Application: One-class learning

Training (step II)

fθ

O
ne

-c
la
ss

sa
m
pl
es r = η/2

KDE-inspired one-class "learning"

e.
g.
,c
la
ss

=
do

gs

Application: One-class learning

Training (step II)

fθ

O
ne

-c
la
ss

sa
m
pl
es r = η/2

fθfθ

Count #samples falling into balls of radius
η/2, anchored at the one-class instances

KDE-inspired one-class "learning"

Computation of a one-class score

e.
g.
,c
la
ss

=
do

gs

Evaluation protocol

In-class

Out-of-class

Application: Topological regularizers

How about neural classifiers? [Hofer et al., 2020]

http://proceedings.mlr.press/v119/hofer20a.html

Application: Topological regularizers

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization



http://proceedings.mlr.press/v119/hofer20a.html

Application: Topological regularizers

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage “densification” of learned representations



http://proceedings.mlr.press/v119/hofer20a.html

Application: Topological regularizers

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage “densification” of learned representations

X



http://proceedings.mlr.press/v119/hofer20a.html

Application: Topological regularizers

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage “densification” of learned representations

{0, 1} = Y
c†

X

† c : X → Y is an unknown labeling function



http://proceedings.mlr.press/v119/hofer20a.html

Application: Topological regularizers

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage “densification” of learned representations

c†
{0, 1} = Y

c−1(0)

X

† c : X → Y is an unknown labeling function



http://proceedings.mlr.press/v119/hofer20a.html

Application: Topological regularizers

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage “densification” of learned representations

c†
{0, 1} = Y

c−1(1)

X

† c : X → Y is an unknown labeling function



http://proceedings.mlr.press/v119/hofer20a.html

Application: Topological regularizers

How about neural classifiers? [Hofer et al., 2020]

Question: Can we control topological properties for generalization

Key idea: encourage “densification” of learned representations

{0, 1} = Y
c†

We want to approximate c by F

X

(implemented as a neural network)

† c : X → Y is an unknown labeling function



http://proceedings.mlr.press/v119/hofer20a.html

Application: Topological regularizers

One aspect of the generalization puzzle in deep learning:

Generalization in spite of memorization

Application: Topological regularizers

One aspect of the generalization puzzle in deep learning:

Generalization in spite of memorization

In fact, we can typically fit the training datawithout error, i.e., LS(F) = 0.
(even under random labels [Zhang et al., 2017])

https://arxiv.org/abs/1611.03530

Application: Topological regularizers

One aspect of the generalization puzzle in deep learning:

Generalization in spite of memorization

In fact, we can typically fit the training datawithout error, i.e., LS(F) = 0.
(even under random labels [Zhang et al., 2017])

In [Hofer et al., 2020] , we study how the distribution around
representations of training samples, φ∗(P), affects generalization.



A1 A2 Al
σ σ

x ∼ P
σ

w⊤︸ ︷︷ ︸
φθ

Consider

https://arxiv.org/abs/1611.03530
http://proceedings.mlr.press/v119/hofer20a.html

Application: Topological regularizers

Lets decompose F as F = γ ◦φ : X → Z → Y with γ(x) = sgn(w⊤x).

Application: Topological regularizers

Lets decompose F as F = γ ◦φ : X → Z → Y with γ(x) = sgn(w⊤x).

{0, 1}
γφ

γ−1(0) γ−1(1)

Z

▷ Z is the codomain of φ, γ−1(i) the decision region of class i

Application: Topological regularizers

Lets decompose F as F = γ ◦φ : X → Z → Y with γ(x) = sgn(w⊤x).

{0, 1}
γφ

γ−1(0) γ−1(1)

Z

Q0

Q1

▷ Z is the codomain of φ, γ−1(i) the decision region of class i

▷ Label-wise distribution, Qi (restriction of φ∗(P) to class i), in Z

Application: Topological regularizers

Lets decompose F as F = γ ◦φ : X → Z → Y with γ(x) = sgn(w⊤x).

{0, 1}
γφ

γ−1(0) γ−1(1)

Z

Q0

Q1

▷ Z is the codomain of φ, γ−1(i) the decision region of class i

We aim for a densification of Qi via regularization of φ.

▷ Label-wise distribution, Qi (restriction of φ∗(P) to class i), in Z

Application: Topological regularizers

Lets take a closer look at densification.

Application: Topological regularizers

Lets take a closer look at densification.

Consider, for a reference set M ⊂ Z, its metric extension†

Mϵ =
⋃

x∈M B(x, ϵ), ϵ > 0

ϵ

M

† B(x, ϵ) = {u ∈ Z : d(x,u) ⩽ ϵ}

Application: Topological regularizers

Lets take a closer look at densification.

Consider, for a reference set M ⊂ Z, its metric extension†

Mϵ =
⋃

x∈M B(x, ϵ), ϵ > 0

ϵ

M

† B(x, ϵ) = {u ∈ Z : d(x,u) ⩽ ϵ}

Question: How much mass is in the ϵ-belt?

Application: Topological regularizers

Informally, densification means:

For a given mass in the reference set M, increase the mass
concentrated in its ϵ-extension!

M

Mϵ

Application: Topological regularizers

The idea is to exert control over connectivity properties!

Application: Topological regularizers

The idea is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)†:

Application: Topological regularizers

The idea is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)†:

Application: Topological regularizers

The idea is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)†:

ei

Application: Topological regularizers

The idea is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)†:

eiei
zi1 zi2

len(ei) = d(zi1 , zi2)

† d(x,y) = ∥x− y∥

Application: Topological regularizers

The idea is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)†:

ei

len(ei) = d(φ(xi1),φ(xi2))

ei
zi1 zi2

† d(x,y) = ∥x− y∥

Application: Topological regularizers

The idea is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)†:

ei

len(ei) = d(φθ(xi1),φθ(xi2))

ei
zi1 zi2

as φ is parametrized by a neural network
with parameters θ

† d(x,y) = ∥x− y∥

Application: Topological regularizers

The idea is to exert control over connectivity properties!

Consider the (Euclidean) minimal spanning tree (MST)†:

ei

len(ei) = d(φθ(xi1),φθ(xi2))

ei
zi1 zi2

as φ is parametrized by a neural network
with parameters θ

Differentiable in θ

⇒ we can control the edge lengths of the MST (as mentioned earlier)
† d(x,y) = ∥x− y∥

Application: Topological regularizers

We call z1, . . . , zb ∈ Z β-connected if all edges in the corresponding MST
are not longer than β.

β

Ruler

> β ⩽ β

Application: Topological regularizers

We call z1, . . . , zb ∈ Z β-connected if all edges in the corresponding MST
are not longer than β.

β

Ruler

> β ⩽ β

Application: Topological regularizers

We call z1, . . . , zb ∈ Z β-connected if all edges in the corresponding MST
are not longer than β.

β

Ruler

> β ⩽ β

This allows us to talk about properties of z1, . . . , zb ∼ Q, i.e., b iid draws
from Q.

Application: Topological regularizers

Let b ∈ N. We call Q a cβb -connected distribution if

cβb ⩽ Pr[Z1, . . . ,Zbare β-connected]

holds for Z1, . . . ,Zb
iid
∼ Q with β > 0, cβb > 0.

Application: Topological regularizers

Let b ∈ N. We call Q a cβb -connected distribution if

cβb ⩽ Pr[Z1, . . . ,Zbare β-connected]

holds for Z1, . . . ,Zb
iid
∼ Q with β > 0, cβb > 0.

This is a property of the product measure Qb.

Application: Topological regularizers

Let b ∈ N. We call Q a cβb -connected distribution if

cβb ⩽ Pr[Z1, . . . ,Zbare β-connected]

holds for Z1, . . . ,Zb
iid
∼ Q with β > 0, cβb > 0.

This is a property of the product measure Qb.

Example: five draws from Qb with b = 4

Application: Topological regularizers

Let b ∈ N. We call Q a cβb -connected distribution if

cβb ⩽ Pr[Z1, . . . ,Zbare β-connected]

holds for Z1, . . . ,Zb
iid
∼ Q with β > 0, cβb > 0.

This is a property of the product measure Qb.

β-connected
not β-connected

✓éé é é

✓
é

Example: five draws from Qb with b = 4

Application: Topological regularizers

Let b ∈ N. We call Q a cβb -connected distribution if

cβb ⩽ Pr[Z1, . . . ,Zbare β-connected]

holds for Z1, . . . ,Zb
iid
∼ Q with β > 0, cβb > 0.

This is a property of the product measure Qb.

β-connected
not β-connected

✓
é

Example: five draws from Qb with b = 4

✓ é✓✓✓

Application: Topological regularizers

Let b ∈ N. We call Q a cβb -connected distribution if

cβb ⩽ Pr[Z1, . . . ,Zbare β-connected]

holds for Z1, . . . ,Zb
iid
∼ Q with β > 0, cβb > 0.

This is a property of the product measure Qb.

β-connected
not β-connected

✓
é

Example: five draws from Qb with b = 4

✓ é✓✓✓

1. We can show that controlling connectivity properties
(β-connectedness) of Qb leads to densification of Q.

2. We can show that densification directly relates to generalization.

Application: Topological regularizers

Some results for a neural classifier‡ on MNIST (10 classes) in a small
sample-size regime (250 samples):

Vanilla 7.1 +/- 1.0

‡ using a mid-size convolutional neural network (CNN13)

Application: Topological regularizers

Some results for a neural classifier‡ on MNIST (10 classes) in a small
sample-size regime (250 samples):

Vanilla 7.1 +/- 1.0

+ Jacobian reg. 6.2 +/- 0.8
+ DeCov 6.5 +/- 1.1
+ VR 6.1 +/- 0.5
+ cw-CR 7.0 +/- 0.6
+ cw-VR 6.2 +/- 0.8

‡ using a mid-size convolutional neural network (CNN13)

Application: Topological regularizers

Some results for a neural classifier‡ on MNIST (10 classes) in a small
sample-size regime (250 samples):

†β chosen via cross-validation on a small validation set

Vanilla 7.1 +/- 1.0

+ Jacobian reg. 6.2 +/- 0.8
+ DeCov 6.5 +/- 1.1
+ VR 6.1 +/- 0.5
+ cw-CR 7.0 +/- 0.6
+ cw-VR 6.2 +/- 0.8

+ ConnLoss (best)
+ ConnLoss†

5.6 +/- 0.7
5.9 +/- 0.3

‡ using a mid-size convolutional neural network (CNN13)

Application: Topological regularizers

Some results for a neural classifier‡ on CIFAR10 (10 classes) in a small
sample-size regime (500 samples):

Vanilla 39.4 +/- 1.5

‡ using a mid-size convolutional neural network (CNN13)

Application: Topological regularizers

Some results for a neural classifier‡ on CIFAR10 (10 classes) in a small
sample-size regime (500 samples):

Vanilla 39.4 +/- 1.5

+ Jacobian reg. 39.7 +/- 2.0
+ DeCov 38.2 +/- 1.5
+ VR 38.6 +/- 1.4
+ cw-CR 39.0 +/- 1.9
+ cw-VR 38.5 +/- 1.6

‡ using a mid-size convolutional neural network (CNN13)

Application: Topological regularizers

Some results for a neural classifier‡ on CIFAR10 (10 classes) in a small
sample-size regime (500 samples):

†β chosen via cross-validation on a small validation set

Vanilla 39.4 +/- 1.5

+ Jacobian reg. 39.7 +/- 2.0
+ DeCov 38.2 +/- 1.5
+ VR 38.6 +/- 1.4
+ cw-CR 39.0 +/- 1.9
+ cw-VR 38.5 +/- 1.6

‡ using a mid-size convolutional neural network (CNN13)

+ ConnLoss (best)
+ ConnLoss†

36.5 +/- 1.2
36.8 +/- 0.3

What’s ahead of us?

There is so much exciting stuff that is going on right now!

Here are some examples . . .

▷ Theory for for optimizing PH-based functions [Carrière et al., 2020]

▷ Studying learning behavior of neural networks [Rieck et al., 2018]

▷ PH for learning with graphs [Hofer et al., 2019; Rieck et al. 2021]

▷ Using simplicial complexes for message passing [Bodnar et al., 2021]

▷ Differentiable topology layers [Brüel-Gabrielsson et al., 2019]

▷ Topological attention for time-series forecasting [Zeng et al., 2021]

▷ Topology-preserving image segmentation [Hu et al., 2019]

▷ Topological regularization of decision boundaries [Chen et al., 2019]











Again, this is, by far, not an exhaustive listing!







http://proceedings.mlr.press/v119/hofer20a.html
https://arxiv.org/abs/1812.09764
https://arxiv.org/abs/2102.07835
http://proceedings.mlr.press/v119/hofer20b.html
https://arxiv.org/abs/2103.03212
https://arxiv.org/abs/1905.12200
https://arxiv.org/pdf/2107.09031.pdf
http://proceedings.mlr.press/v89/chen19g/chen19g.pdf
https://proceedings.neurips.cc/paper/2019/file/2d95666e2649fcfc6e3af75e09f5adb9-Paper.pdf

What I (personally) find interesting

Continuing work along the lines of [Bianchini & Scarselli, 2014] , i.e.,
using concepts from topology to study hypothesis set complexity.



see also [Ramamurthy et al., 2019]
[Guss & Salakhutdinov, 2018]

http://proceedings.mlr.press/v119/hofer20a.html
http://proceedings.mlr.press/v97/ramamurthy19a.html
https://arxiv.org/abs/1802.04443

What I (personally) find interesting

Continuing work along the lines of [Bianchini & Scarselli, 2014] , i.e.,
using concepts from topology to study hypothesis set complexity.

Can we possibly come up with other/better measures of quantifying
hypothesis set complexity (similar to VC-dim., or Rademacher complexity)?



see also [Ramamurthy et al., 2019]
[Guss & Salakhutdinov, 2018]

http://proceedings.mlr.press/v119/hofer20a.html
http://proceedings.mlr.press/v97/ramamurthy19a.html
https://arxiv.org/abs/1802.04443

What I (personally) find interesting

Continuing work along the lines of [Bianchini & Scarselli, 2014] , i.e.,
using concepts from topology to study hypothesis set complexity.

Can we possibly come up with other/better measures of quantifying
hypothesis set complexity (similar to VC-dim., or Rademacher complexity)?

With differentiable layers for NN’s that compute PH, we have a great tool
– but, we do not really know what to do with it (yet).



see also [Ramamurthy et al., 2019]
[Guss & Salakhutdinov, 2018]

http://proceedings.mlr.press/v119/hofer20a.html
http://proceedings.mlr.press/v97/ramamurthy19a.html
https://arxiv.org/abs/1802.04443

Collaborators

Jan Reininghaus
IST Austria (back then)

Ulrich Bauer
TUM

Florian Graf
Univ. Salzburg

Chris Hofer
Univ. Salzburg

Thank You!
Stefan Huber

IST Austria (back then)
@shuber3

Bastian Rieck
ETH

@Pseudomanifold

Marc Niethammer
UNC Chapel Hill
@MarcNiethammer

https://twitter.com/shuber3
https://twitter.com/Pseudomanifold
https://twitter.com/MarcNiethammer

	Foobar

