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Abstract

In this thesis, we study statistical models for transform coefficients of two different wavelet
transform variants, the pyramidal Discrete Wavelet Transform (DWT) and the Dual-Tree Com-
plex Wavelet Transform (DTCWT). The work is motivated by the high computational demand
of many state-of-the-art modeling approaches, although a variety of applications require com-
putationally efficient, yet accurate models which facilitate straightforward parameter estima-
tion and possess an analytically tractable form. In case of the DTCWT, there is also very little
literature on (joint) statistical modeling of complex wavelet coefficients, even though it is a well-
established fact that complex wavelet transforms exhibit striking advantages compared to the
DWTwhen it comes to image analysis applications. The statistical models we develop through-
out this thesis are utilized in three different areas of image processing. We address the research
branches of (probabilistic) texture image retrieval, medical image classification and image wa-
termarking. For each particular field, we provide a brief introduction of the problem, then
introduce our contribution and conclude with an extensive experimental section. This includes
a comparative study to existing work in literature and, depending on whether computational
effort is a crucial issue, a thorough computational analysis of the main building blocks. Our re-
sults reveal, that the proposed models are beneficial in the aforementioned areas and improve
upon state-of-the-art work. In addition, application of statistical models is not limited to the
presented fields. In fact, we presume that other areas of transform domain based image pro-
cessing, such as denoising or segmentation, can benefit in a similar manner.
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Chapter 1

Introduction

In many disciplines of scientific research, measurements or observations in general make up
the basis for any processing step. It is not uncommon to assume that these measurements stem
from some underlying stochastic process. Consequently, many problems can be formulated as
problems of statistical inference. At the very core of inferential procedures, we identify suitable
statistical models which capture certain characteristics of the observations. In this thesis, we are
particularly concerned with statistical inference problems which arise in the context of image
processing. To be more specific, we focus on the area of transform domain image processing,
where the wavelet transform in all of its variants has proved to be highly beneficial. In fact, the
wavelet transform resembles the way our visual system processes information which makes it
very attractive from an image processing point of view. The basic motivation for leaving the
pixel domain and switching to a transform domain representation of images is to facilitate any
kind of processing operations. Throughout the last years, statistical models for wavelet trans-
form coefficients have found application in many areas of image processing, such as denoising
[16, 127, 155], coding [164, 110], compression [14], classification [18, 106], image retrieval [40] or
watermarking [69, 139, 12].

The pyramidal Discrete Wavelet Transform (DWT) [113, 114] is by far the most prevalent
transformation in the image processing community. In a similar manner, the coverage of sta-
tistical models for DWT coefficients is quite extensive [71, 155, 190, 109]. Nevertheless, the
DWT is not tailored for image analysis applications (i.e. classification, denoising, etc.) and
even has some well-known deficiencies in this context. To overcome the shortcomings of the
DWT, many alternative transformations have been developed recently, however, only a small
subset has gained substantial interest in the community. Two of these alternatives are the
Steerable Pyramid of Simoncelli et al. [168] and the Dual-Tree Complex Wavelet Transform
(DTCWT), proposed by Kingsbury [85]. Since the transform coefficient statistics of coefficients
from the Steerable Pyramid resemble the statistics of DWT coefficients, many works have been
devoted to the development of suitable statistical models for Steerable Pyramid coefficients as
well [190, 39, 179]. In contrast, the number of publications dealing with statistical models for
DTCWT coefficients is substantially lower [163, 154, 19, 151]. Most works focus on models
for the magnitudes of complex wavelet coefficients, however, recently the phase has gained
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Chapter 1. Introduction 6

research interest as well [128, 129, 189].
The motivation for developing novel statistical models for wavelet coefficients has several

facets. In case of the DWT, our motivation is strongly related to the area of transform domain
watermarking [28]. We identify two topics which received little treatment in literature so far.
First, the commonly-accepted model for DWT coefficients, the Generalized Gaussian distribu-
tion [22] has the disadvantage of computationally expensive and numerically cumbersome pa-
rameter estimation [97]. Unless the model parameters are set to predefined values (see, e.g.
[69]) – which might have a negative impact on detector performance – this fact prevents the use
of a GGD-based detector in computationally demanding scenarios. As an alternative, we seek
a statistical model which allows to derive a watermark detector with an analytically tractable
form and a computationally inexpensive way to estimate the model parameters. This model
might be less appropriate in terms of Goodness-of-Fit, yet accurate enough to outperform the
standard Gaussian distribution in terms of watermark detection performance. As a second
point, we highlight the fact that statistical models tailored to capture the association between
DWT coefficients are primarily based on Hidden Markov models [155, 109]. Although, this
allows to model inter- and intra-scale dependencies, those models turn out to be analytically
intractable in Likelihood-Ratio testing scenarios. Since we want to facilitate color image water-
marking in the wavelet transform domain, extending the Hidden Markov model approach to
color images [192] is unrewarding. Instead, we seek a joint statistical model which can capture
coefficient dependencies across color channels and yet allows to derive closed-form expressions
for Likelihood-Ratio tests.

Regarding the development of statistical models for DTCWT coefficients, our motivation
stems from a completely different research area. We are concerned with a medical image classi-
fication problem which bears a strong relation to the field of texture image retrieval and classi-
fication. Our intention is to evaluate whether statistical approaches to capture coefficient char-
acteristics are equally effective for our medical problem as they are in texture analysis applica-
tions, see e.g. [150, 40, 179]. Our objective is to advance existing statistical models for DTCWT
coefficient magnitudes and to quantify the suitability of the models with respect to classification
and texture retrieval performance. Since both problems have strong computational constraints,
we aim for analytically tractable approaches and straightforward parameter estimation. In ad-
dition, we are further motivated to develop a computationally simple alternative to the Hidden
Markov Tree approach of [19] in order to capture DTCWT coefficient dependencies, especially
across color channels. This seems a promising idea in consideration of the fact that color infor-
mation has shown to be beneficial in texture discrimination scenarios [35].

1.1 Contribution

The contribution of this thesis is split into several parts. Basically, we discuss several statistical
models for DWT and DTCWT coefficients and their application in three different areas of image
processing. In the context of DWT coefficient modeling, we briefly review the popular Gener-
alized Gaussian model and the less often used Cauchy distribution. The latter model is then
used in the context of image watermarking to derive a computationally efficient watermark
detector which exhibits substantially better detection performance than several state-of-the-art
detectors on a large set of natural images. In order to incorporate coefficient dependencies
among the subbands of DWT decomposed color channels into the watermark detection pro-
cess, we present a joint statistical model which can be considered as a multivariate extension to
the Generalized Gaussian distribution. We deal with parameter estimation issues and suggest
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a novel Goodness-of-Fit test to quantify the suitability of the model. In an extensive size and
power study we show that the desired significance levels can be met and that the test exhibits
remarkable power against shape alternatives. Eventually, we derive a novel watermark detec-
tor based on the joint statistical model and demonstrate that our detector performs better than
two state-of-the-art detectors in field of color image watermarking.

In the context of DTCWT coefficient modeling, we advance current research results to the
effect that we present two novel models for subband coefficient magnitudes which are both
accurate and admit straightforward parameter estimation. We quantify the suitability of the
proposed models by means of an extensive Goodness-of-Fit study on four commonly-used tex-
ture image databases. The modeling results are then exploited for lightweight texture image
retrieval where we propose a novel retrieval approach based on a probabilistic formulation
of image retrieval [186]. We show that switching from computationally expensive Maximum-
Likelihood parameter estimation procedures to moment matching approaches does not nega-
tively affect the retrieval rates, however considerably lowers the computational burden of this
step. A computational analysis of the main building blocks of the retrieval framework confirms
that we can design a probabilistic approach with low computational complexity. In contrast to
the majority of research papers on texture image retrieval, we conduct an extensive compara-
tive retrieval study on four texture image repositories to evaluate the quality of our proposed
approach with respect to several state-of-the-art approaches.

In a second step of modeling the DTCWT coefficient magnitudes, we present an alternative
model to the Hidden Markov Tree approach of [19]. Since DTCWT coefficients exhibit a quite
strong association structure, it appears reasonable to capture this association by a joint statistical
model. For that purpose, we propose a copula-based approach which (i) allows to rely on
existing knowledge about the DTCWT coefficient statistics and (ii) completely separates the
task of finding a suitable model for the association structure. We show, that the copula-based
model for DTCWT coefficients can be exploited for texture image retrieval and perfectly fits into
the probabilistic framework we mentioned above. Again, we can demonstrate a considerable
increase in retrieval performance, however, at the expense of computation time. To remedy
this shortcoming, we suggest a simple data reduction strategy which only slightly affects the
retrieval results, but allows to deploy the approach even on large databases.

As a third field of application, we tackle the medical image processing problem of predicting
histologies from colonoscopy images based on the visual appearance of the mucosal surface pat-
terns. We demonstrate, that a computer-assisted prediction system can be a serious diagnostic
tool for in vivo staging of colorectal lesions. In particular, we consider two different strategies to
cope with that problem. First, we take the straightforwardway of using a discriminant classifier
approach. Second, we consider the prediction problem from the viewpoint of image retrieval
and discuss the advantages of a generative model based approach. In the former case, we ex-
ploit the statistical models for DTCWT coefficient magnitudes to construct feature vectors based
on the estimated model parameters. Then, we extend the concept of co-occurrence matrices (see
[65, 148]) to capture the joint occurrence of wavelet coefficients across different color channels
and compute a set of commonly-used texture descriptors from these matrices. Eventually, we
present an approach of decorrelating wavelet subbands from different color channels and using
the variances of the decorrelated subbands as image features. In all three cases, classification
is based on a nearest-neighbor principle and we demonstrate remarkable classification rates for
two clinically relevant scenarios. In the context of generative models, we highlight potential
disadvantages of discriminant classifier based approaches and emphasize the points where a
retrieval oriented point of view can be beneficial. We present impressive prediction results for
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the image retrieval approaches with similar or higher rates compared to human-based studies.

1.2 Organization

In the remaining part of this introductory chapter, we include a brief discussion of the four im-
age databases we use throughout the thesis. Further, we provide some notational conventions
and address the topic of reproducible research. The remaining chapters are then organized
into two major parts: in the first part, i.e. Chapter 2, we develop the statistical foundation of
the following chapters. The second part is devoted to the areas of application of the different
statistical models. Each application-specific chapter is structured in a similar way: first, we in-
troduce the presentation of the problem, then we present our contribution and conclude with
an experimental evaluation and a brief discussion of the results. Since the fields of application
span different research areas, it is unrewarding to devote a separate chapter to related research
work. We rather follow the strategy to establish connections to previous works as we progress
from chapter to chapter. In Chapter 3, we revisit a recently proposed formulation of probabilis-
tic image retrieval and then exploit the statistical models for DTCWT coefficients to develop
two novel retrieval approaches. Chapter 4 is devoted to the medical image classification prob-
lem and Chapter 5 deals with the topic of image watermarking. Chapter 6 concludes the thesis
with a confrontation of the original questions and the achieved results. Finally, we provide an
outlook on open research problems and topics we could not cover in this thesis.

1.3 Image Databases

Image databases constitute the basis for all experimental results presented throughout this the-
sis. We use one database of natural images (UCID [159]) and three databases of texture images.
The three texture databases consist of two commonly-known repositories (Outex [142] and Vis-
tex [31]), and one real-world database of textures captured by the author and several cowork-
ers1 (Stex). We consciously exclude two other popular databases, the Brodatz album [13] and
the CUReT [30] textures for several reasons: first, availability of the Brodatz album is limited to
grayscale images2 and the amount of available textures differs in literature (111 in [149], 112 in
[186] or even 116 in [111]). Second, CURet3 only provides a set of 61 different physical textures,
however, under 205 different viewpoint and illumination combinations. Since we already use
the Outex database which contains textures captured under artificial conditions, we choose not
to include another database of this kind. Example images from all four databases are shown
in Fig. 1.1 including some commonly-known example images (i.e. Fig. 1.1a) we often use for
illustration purposes.

UCID Summarizing the description of Schaefer & Stich [159], the UCID image database con-
sists of 1338 images in uncompressed form (TIFF format) captured by a Minolta Dimage
5 camera. All images are either 512 × 384 or 384 × 512 pixel and were captured using
automatic settings which mostly resembles a real-world scenario.

Outex Since the test suite for texture retrieval in the Outex database only consists of grayscale
images of size 128 × 128 pixel, we first fetched 316 color texture images in BMP format

1thanks to Heinz Hofbauer, Stefan Huber, Peter Meerwald and Daniela Wöckinger
2available from http://www.ux.uis.no/~tranden/brodatz.html
3available from http://www.cs.columbia.edu/CAVE/software/curet

http://www.ux.uis.no/~tranden/brodatz.html
http://www.cs.columbia.edu/CAVE/software/curet
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with 600dpi under inca lightning conditions from the Outex website4. Two images,
canvas007, canvas010 were missing, wallpaper015 was not accessible. The images
were then cropped to 512× 512 pixel starting from the top-left hand corner of the image.

Vistex We use the original 512×512 pixel versions of the texture images available from the MIT
Vision Texture website5. There are 167 textures available, denoted by Vistex (full). We
further select a subset of 40 textures, denoted by Vistex (small), since many approaches
in various publications (see, e.g. [40, 101, 188]) use this limited subset. According to the
information on the website, images in the Vistex databasewere captured under real-world
conditions without studio lightning.

Stex The Stex database is a novel texture database consisting of 476 images of different tex-
tures captured in the area around Salzburg/Austria using three cameras: a Canon IXUS
70, a Canon EOS 450D and a Nikon D40. Similar to the Vistex database, our image set
is intended to resemble a real-life scenario. Except for the Canon EOS 450D pictures
which were captured in RAW format, all other textures were stored as JPEG images. Post-
processing consisted of conversion to PNM format (using the ImageMagick’s convert
tool) and resizing to 512× 512 pixels by means of bicubic interpolation (using MATLABs
imresize routine).

1.4 Notational Conventions

To reach maximum notational consistency, we have to introduce some conventions. First, if not
stated otherwise, uppercase letters (i.e. X) will be used to denote random variables. Lowercase
letters (i.e. x) will denote observations. Accordingly, boldface uppercase letters denote random
vectors (i.e. X). In case X denotes a matrix, the meaning will be unambiguous from the context.
Lowercase boldface letters (i.e. x) will denote observation vectors. We adhere to the convention
that FX denotes the cumulative distribution function (c.d.f.) of a random variable X and pX

denotes the corresponding probability density function (p.d.f) or the probability mass function
(p.m.f.) in case of discrete random variables. Greek letters, such as α or α denote parameters or
parameter vectors, respectively. Entities, such as images, will be denoted by calligraphic letters
(i.e. I). When we speak of an image database, we mean a collection of images I1, . . . , IL of size
L. Regarding the use of special functions, Γ denotes the Gamma function and ψ denotes the
Digamma function [1]. All further notational conventions will be introduced at the correspond-
ing locations.

1.5 Some Notes on Reproducibility

As Vandewalle et al. (see [181] and references therein) recently pointed out, reproducible re-
search is at the very core of every scientific discipline. In order to reach a certain degree of
reproducibility of the results presented in this thesis, we provide reference implementations of
all approaches as either C or MATLAB code6. Further, we provide access to the Stex database
as another reference repository to evaluate texture analysis algorithms. Unfortunately, access to
the medical database we use in Chapter 4 is restricted due to privacy issues.

4available from http://www.outex.oulu.fi/
5available from http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
6available from http://www.wavelab.at/sources

http://www.outex.oulu.fi/
http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
http://www.wavelab.at/sources
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(a) Some classic example images: Lena, Elaine, Bridge, Boat, Peppers and Barbara.

(b) Vistex

(c) Outex

(d) Stex

(e) UCID

Figure 1.1: Example images from different image databases.



Chapter 2

Statistical Modeling in the Wavelet Domain

In this chapter, we discuss the foundation of this thesis, namely the statistical models of wavelet
coefficients from two different wavelet transforms. We start with an introduction of a set of
statistical tools which we extensively use in the following sections. Other statistical procedures
which are used in this thesis will be introduced when needed. After this brief introduction,
the chapter is basically split into two parts: in the first part, we recapitulate the main results on
statistical modeling of DiscreteWavelet Transform (DWT) coefficients, and in particular, we take
a closer look at the characteristic distributions which arise in case of natural images. Then, we
present a novel multivariate model to capture the dependencies across DWT detail subbands of
different color channels and develop a novel Goodness of Fit test for this multivariate model. In
the second part, we continue with a discussion of characteristic coefficient distributions which
arise when we decompose images by means of a complex wavelet transform variant, known
as the Dual-Tree Complex Wavelet Transform (DTCWT). We particularly focus on statistical
models for DTCWT transform coefficient magnitudes of texture images. Finally, we present
a multivariate extension to the univariate models in order to capture coefficient dependencies
across subbands and color channels.

2.1 The Statistical Toolset

A commonly observed situation in the first stage of finding a suitable statistical model for a
set of (univariate) observations is to analyze the frequency distribution. Usually, a classic his-
togram is used as a first choice where the range of observation values is divided into a certain
number of bins (with equal bin width) and we count the number of observations falling into
each bin. Plotting the bins against the bin count then conveys an impression about the fre-
quency distribution. However, in case our objective is to highlight certain characteristics of
the observations such as tail behavior for instance, other variants of the classic histogram are
more reasonable. In situations where we expect heavy tails for example, it has become common
practice to visualize the y-axis of the histogram on a logarithmic scale. We refer to this type of
histogram as the log-scale histogram. In order to check the Goodness of Fit (GoF) of a selected
statistical model, we employ Q-Q plots as a graphical tool and Chi-Square GoF tests to obtain
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a quantifiable measure of model fit. Basically, both the Q-Q plot and the Chi-Square GoF test
are implemented according to the algorithmic description provided by Krishnamoorthy [89].
When not stated otherwise, the significance level α is set to 5%. Since the binning strategy is a
crucial point when testing the GoF bymeans of a Chi-Square test, we adopt the bin width of 0.3s
as the standard setting, where s denotes the sample standard deviation. This setup is used in
the software DATAPLOT [66]. In case of empty edge bins, the bins are combined with the next
non-empty bin. In contrast to univariate GoF testing, statistical tests for the GoF of multivari-
ate models are a neglected issue in literature. Chi-Square tests are computationally not feasible
in general, since it is not trivial to choose a suitable binning of the possibly high-dimensional
space. Even in three dimensions we expect many cells with cell counts of less than 5 observa-
tions, an empirical requirement of the Chi-Square test. Tests for multivariate normality are an
exception to the rule, since some GoF tests (see [27, 170]) actually exist. In Section 2.2.3, we
will take up the rather generic GoF test idea of Smith & Jain [170] and propose a novel GoF test
for a special multivariate distribution. Last, we introduce a less commonly known graphical
tool to assess the dependency structure between pairs of observations, such as pairs of wavelet
coefficients from different subbands or different color channels. Besides the classic measures of
association, i.e the linear correlation coefficient, Kendall’s τ [84] or Spearman’s ρ [173], the so
called Chi-plot of Fisher & Switzer [131] is a valuable visual tool. The basic idea of a Chi-plot
is to transform the pairs of observations in such a way that the resulting pairs (residing in the
interval [−1, 1] × [−1, 1]) reveal the structure of association. Hence, it can be considered as an
extension of the scatterplot which is usually employed to illustrate possible dependencies. In
a Chi-plot, departures from independency are indicated by a deviation from the central region
of the plot. A tolerance band is defined to allow slight scattering caused by sampling variabil-
ity. Our implementation follows the description given in [131, 48, 47], with the tolerance region
enclosed by horizontal lines at ±cp/

√
n, where cp = 1.78 and n denotes the number of obser-

vations. This is a common setting, as it is noted in [48, 47] for example. In the Chi-plots, the
tolerance band will always be shown as a gray-shaded region.

2.2 DWT Subband Models

The Discrete Wavelet Transform provides a convenient way to obtain a multiscale representa-
tion of an image which closely resembles the way the human visual system processes informa-
tion [105, 152, 33]. It possesses some attractive properties of which the most important three are
highlighted in [29]: first, locality denotes the fact that wavelets are localized in both space and
frequency simultaneously. Second, multiresolution allows to analyze a signal at different scales,
hereby allowing to capture both short- and long-term structures. Third, compression denotes the
fact that we obtain a sparse representation of a signal which explains the highly non-Gaussian
nature of the transform coefficients. Another interpretation of the compression property is that
we obtain a large number of small coefficients containing little signal information and a small
number of large coefficients representing significant signal information. From a computational
point of view, the DWT is also very appealing since it provides a non-redundant representation
of an image and it can be computed with linear complexity. The decomposition of an image
by a 2-D DWT can be efficiently computed by separate row and column filtering and leads to
four subbands per scale with one approximation subband and three detail subbands capturing
image details oriented along the horizontal, vertical and diagonal (i.e. ±45◦) direction. Hence,
a J-scale 2-D DWT leads to J × 3 =: B detail subbands in total. Figure 2.1 shows all subbands
(including the approximation subband) of a one-scale 2-D DWT of the test image Lena. To high-
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light the directional selectivity of the detail subbands, i.e. the important frequency information
(e.g. edges) in the different directions, we only show the coefficients with absolute values above
the 0.9 quantile (i.e. the largest 10% of all coefficients).

Figure 2.1: One-scale 2-D DWT decomposed test image Lena using a CDF 9/7 filter [32].

In order to visualize the non-Gaussian nature of the transform coefficients, Fig. 2.2 shows a
collection of log-scale coefficient histograms obtained from different detail subbands. The plots
include the p.d.f. of fitted Gaussian distributions as a reference model. Further, we list the
kurtosis “excess” γ2 [1] which is supposed to be zero in case the coefficients actually follow a
Gaussian law. From the considerable deviation in the middle and tail region of the plot and the
strong positive values of γ2 (i.e. leptokurtic), we conclude that the Gaussian distribution is a
bad statistical model for the coefficients.

Regarding the issue of intra- and inter-scale coefficient dependencies and implications for
statistical modeling, we state three assumptions which often implicitly occur in literature. Ba-
sically, these assumptions are motivated by the fact that the 2-D DWT can be considered as an
approximate Karhunen-Loéve transform [115] and hence acts as a decorrelator. However, as it is
pointed out by Crouse et al. [29] or Liu & Moulin [109] this is only partially true.

Assumption 1. The transform coefficients xb1, . . . , xbNb
of an arbitrary 2-D DWT detail subband

b, 0 < b 6 B are assumed to be a realization of Nb i.i.d. copies Xb1, . . . ,XbNb
of a random variable Xb,

where Nb denotes the number of transform coefficients of that subband.

This assumption neglects the clustering property of wavelet coefficients [29], i.e. that small
/large coefficients tend to have small/large adjacent coefficients with high probability. This
property is successfully exploited by LoPresto et al. in [110] for the purpose of wavelet-based
image coding for example.

Assumption 2. The transform coefficients of different subbands of the same scale are considered to be

independent.
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Figure 2.2: Log-scale histogram of the vertical DWT detail subband of four different natural images show-
ing the coefficient values (black points) and the p.d.f.s of fitted Gaussian distributions (γ2 denotes the
sample kurtosis "excess").

Given that h, v,d identify the horizontal, vertical and diagonal detail subband at an arbitrary
decomposition level, then the joint p.d.f. of X = (Xh,Xv,Xd) be written as pX = pXh

· pXv
· pXd

.
Basically, this allows to estimate statistical model parameters separately for each subband on
the same scale. We can quantify the validity of the assumption by using Chi-plots constructed
from the coefficients of subband pairs on the same scale. Figure 2.3 shows a set of Chi-plots
for a selection of such pairs where we can observe that the observations are located around
the shaded region or even inside, especially in the central (i.e. λ ≈ 0) part of the plot. This
visual impression does not admit to postulate independence, however, the deviation from the
central region is also not distinctive enough to claim the opposite. Further, the linear correlation
coefficient r, Spearman’s ρ and Kendall’s τ exhibit values close to zero which at least indicates
no correlation.

Assumption 3. The transform coefficients of subbands across different scales are considered to be inde-

pendent.

In combination with the previous assumptions, this allows to write the joint p.d.f. of the
random vector X = (X1, . . . ,XB) as pX = pX1 · · ·pXB

. This assumption is definitively a very
strong one, since inter-scale dependencies do exist and have been successfully exploited in the
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coding community by means of zero-trees [164] or for signal estimation and detection [29].
However, all three assumptions contribute to the same objective, namely to allow the use of
simple and analytically tractable models which can be estimated in a computationally efficient
and reliable way. In the following two sections, we present statistical models for the p.d.f.
pXb

and rely on all three assumptions stated above. Regarding the notation, we follow the
convention to omit the subband index b in cases where there is no added value. Further, when
we speak of the DWT we mean the 2-D variant from this point on. Another convention we
follow is to identify the statistical model of a particular subband by indexing the parameter
(vector) θ of the corresponding model.
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Figure 2.3: Exemplary Chi-plots of the vertical and horizontal DWT detail subband (level three) of four
natural images to illustrate the approximate decorrelation of DWT coefficients across subbands of the same
scale.

2.2.1 Generalized Gaussian Distribution (GGD)

The Generalized Gaussian distribution is by far the most popular statistical model for DWT
detail subband coefficients and has been extensively used in literature. The GGD first appears in
a textbook by Clarke [22] formodeling the AC coefficients of a Discrete Cosine Transform (DCT).
In the context of DWT transform coefficients, Mallat [113] proposes the GGD as a reasonable
model to capture the non-Gaussian nature of the transform coefficients. In this thesis, we use
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the GGD parametrization of Nadarajah et al. [133], where the p.d.f. with shape parameter c > 0,
scale parameter a > 0 and location parameter µ ∈ R is given by

pX(x;a, c) =
c

2aΓ (1/c)
exp

(

−

∣

∣

∣

∣

x− µ

a

∣

∣

∣

∣

c)

, −∞ < x <∞. (2.1)

We can safely assume µ = 0 in our case since the DWT transform coefficients theoretically
sum to zero [115]. The Laplace distribution [89] arises as a special case of the GGD for c = 1
and the Gaussian distribution can be obtained by setting c = 2. The relation to the Gaussian
distribution can be easily checked by using Euler’s reflection formula Γ(z)Γ(1 − z) = π/ sin(πz)

for z = 0.5 which gives Γ(0.5) =
√
π. Since the inverse c.d.f. (i.e. the quantile function F−1(u) =

infx∈R{F(x) > u},u ∈ [0, 1]) is needed for the computation of the Q-Q plot, we briefly restate
[133, 134]

F−1
X (u;a, c) =

{
−a
[

P−1
u (1/c, 2u)

]1/c if u 6 0.5

a
[

P−1
u (1/c, 2(1 − u))

]1/c if u > 0.5
, (2.2)

where

Pu(a, x) :=
1
Γ(a)

∫∞

x

ta−1 exp(−t)dt (2.3)

denotes the regularized (upper) incomplete Gamma function1 [1]. Regarding the issue of pa-
rameter estimation based on an i.i.d. sample x1, . . . , xN , basically two methods are commonly
used in literature: Moment Matching (MM) and Maximum Likelihood (ML) estimation. Mo-
ment matching is discussed by Mallat [113] and Birney et al. [10]. Unfortunately, computation
of the moment estimates requires to find a numerical solution to a function inversion problem.
A computationally fast way to approximate this function inversion problem is discussed by
Krupinski [91], other authors commonly use a lookup-table approach (e.g. [40]). ML estimation
is extensively covered by Varanasi et al. [182] and a Newton-Raphson algorithm to compute a
numerical solution to the ML equations is introduced by Do & Vetterli [40]. Starting values for
Newton-Raphson are obtained using moment estimates based on the lookup-table approach.
Whenever we mention ML estimation for the GGD parameters in this thesis, we refer to the
procedure given in [40]. Due to the computational and numerical difficulties related to parame-
ter estimation of the GGD in general, Song [171] introduced a novel method based on a convex
shape equation. In Section 3.3, we will revisit the computational demand of the various esti-
mation methods in terms of required arithmetic operations. Fig. 2.4 shows the same log-scale
coefficient histograms of Fig. 2.2 together with the p.d.f.s of fitted GGDs. To illustrate the GoF,
Fig. 2.5 then shows some Q-Q plots for arbitrarily chosen subband coefficients from our test
images. Although we observe slight deviations in the tail regions of the Q-Q plots, the points
approximately follow the dashed line. In Section 2.2.4, we revisit the question of GoF by means
a quantitative study using Chi-Square GoF tests conducted on the subband coefficients of the
UCID images.

2.2.2 Cauchy Distribution

In [12], Briassouli et al. introduce the Cauchy distribution as a possible alternative for modeling
the AC coefficients of DCT transformed images in the context of digital image watermarking.

1To avoid confusion, this function is implemented by the MATLAB routine gammaincinv(x,a,’upper’) or by
InverseGammaRegularized[a,x] in Mathematica.
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Figure 2.4: Log-scale histogram of the vertical DWT detail subband coefficients of four different natural
images showing the coefficient values (black points) and the p.d.f.s of fitted Generalized Gaussian distri-
butions (using ML estimation).

In [94], we exploited this model for modeling DWT detail subband coefficients for the purpose
of image watermarking as well. The p.d.f. of the Cauchy distribution with location parameter
−∞ < δ < ∞ and shape parameter γ > 0 is given by [89]

pX(x;γ, δ) =
1
π

γ

γ2 + (x− δ)2
, −∞ < x < ∞. (2.4)

Again, we can safely assume that the location parameter δ is zero for the same reason explained
in Section 2.2.1 and abbreviate the p.d.f. by pX(x;γ) := pX(x;γ, 0). In contrast to the Gaussian
distribution, the tails of the Cauchy distribution decay at a rate slower than exponential, hence
we observe heavy tails. The inverse c.d.f. which is needed to compute the Q-Q plots is given by

F−1
X (u;γ) = γ tan(π(u− 0.5)), 0 < u < 1. (2.5)

It is worth noting that neither the mean nor the variance or any other higher moments are
defined for the Cauchy distribution. To illustrate the shape of the p.d.f., Fig. 2.6 shows log-
scale histograms of same DWT detail subband coefficients as in the previous section, together
with fitted (ML estimation) Cauchy p.d.f.s. Note, that the case γ = 1 would indicate a standard
Cauchy distribution.
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Figure 2.5: Exemplary Q-Q plots to visualize the GoF of the Generalized Gaussian distribution for the
DWT transform coefficients of the vertical detail subband of four natural images (at DWT level two).

Regarding the estimation of the shape parameter γ from an i.i.d. sample x1, . . . , xN, we
can either rely on sample quantile estimation, direct ML estimation or the estimation approach
proposed by Tsihrintzis & Nikias [176] for Symmetric α Stable (SαS) distributions [138]. The
last approach is particularly interesting, since the Cauchy distribution is a special case of an
SαS distribution for α = 1 and the estimate of γ can be computed with linear effort, i.e. O(N).
Given the estimation setup of our problem, i.e. δ = 0 and α = 1, the shape estimator presented
in [176] is

γ̂ =

[

1
N

∑N
i=1 |xi|

p

C(p, 1)

]1/p

with C(p, 1) =
1

cos
(

π
2 p
) (2.6)

for 0 < p < 1/2. The parameter p denotes the order of the fractional moment and can be
chosen arbitrarily according to [176]. As it is pointed out by the authors, the choice p ≈ 1/3 is
reasonable and has shown good performance. Estimation based on the sample quantiles and
ML estimation is given in [89]. The sample quantiles estimator is γ̂ = 0.5(xq−x1−q) tan[π(1−q)]

where xq denotes the q-th sample quantile (0.5 < q < 1) and the ML estimate of γ is defined as
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Figure 2.6: Log-scale histogram of DWT coefficients from the vertical detail subband of four different
natural images, showing the coefficient values (black points) and the p.d.f.s of fitted Cauchy distributions
(using ML estimation).

the solution to
1
N

N∑

i=1

2
1 + (xi/γ)2

− 1 = 0. (2.7)

This equation has to be solved numerically, e.g. using the Newton-Raphson algorithm. The
update steps can easily be derived [94]: first, we define the left-hand side of Eq. (2.7) as g(γ)

and then deduce

g(γ)′ :=
∂

∂γ
g(γ) =

4γ
N

N∑

i=1

x2i
(γ2 + x2i)

2
. (2.8)

The update step follows as γ̂k+1 = γ̂k −g(γ̂k)/g ′(γ̂k). A possible starting value γ̂1 is the sample
quantile estimate for example. We illustrate the visual GoF by providing a series of Q-Q plots
in Fig. 2.7 for the same subband coefficients we used in the previous section. The plots look
almost equal to the ones shown in Fig. 2.5, again showing slight deviations in the tail regions.
However, since the Q-Q plot just provides a first visual impression of the GoF, we conduct Chi-
Square GoF tests on the transform coefficients of a collection of DWT decomposed test images
in Section 2.2.4.
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Figure 2.7: Exemplary Q-Q plots to visualize the GoF of the Cauchy distribution for the DWT transform
coefficients of the vertical subband of four natural images.

2.2.3 Multivariate Power Exponential Distribution

Generally speaking, the Multivariate Power Exponential (MPE) distribution is a special case of
Kotz-type distribution [132] and can be considered as a multivariate extension of the GGD [58].
Verdoolaege et al. [188] first employed this distribution as a statistical model to capture the
dependencies of DWT detail subband coefficients across different color channels. In [95], we
used the MPE for color image watermarking (see Section 5.3). To illustrate that it is reasonable
to use a multivariate model to capture dependencies among subband coefficients of different
color channels, Fig. 2.8 shows two exemplary Chi-plots for two subband combinations of the
test image Lena. In case of independence, the points are supposed to lie in the central (shaded)
region of the plot. Apparently, there is a quite strong dependency between the coefficients
which is further confirmed by looking at the numbers for the linear correlation coefficient r,
Spearman’s ρ and Kendall’s τ.

In consideration of the non-Gaussian nature of the DWT transform coefficients, the MPE
model seems to be a good candidate to take the strong association structure into account. The
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Figure 2.8: Exemplary Chi-plots of vertical DWT detail subband (level three of Lena) coefficients extracted
from the red-green (left) and red-blue (right) color channel combination to illustrate the association among
transform coefficients of equal subbands but different color channels.
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Figure 2.9: Exemplary p.d.f. of a MPE distribution.

p.d.f. of a n-variate MPE distribution is given by [58]

pX(x;µ,Σ,β) =
nΓ
(

n
2

)

π
n
2 Γ
(

1 + n
2β

)

21+
n
2β

|Σ|−1/2 exp
{

−
1
2

[(

x − µ)T Σ−1(x − µ
)]β

}

(2.9)

with x ∈ Rn and parametersβ > 0 (shape), µ ∈ Rn (location) andΣ (positive definite symmetric
n × n matrix). The p.d.f. of an exemplary bivariate MPE distribution with µ = 0, β = 0.4 and
Σ =

(

1 0.6
0.6 1

)

is shown in Fig. 2.9.
Since we only have three color channels, i.e. n = 3, and we can safely assume a zero location

vector, we have to estimate a 3 × 3 matrix Σ and the shape parameter β. Gomez et al. [58]



Chapter 2. Statistical Modeling in the Wavelet Domain 22

mention moment estimation as a suitable method, Verdoolaege et al. [188] propose a ML esti-
mation strategy. However, the computational steps are neither listed in [58] nor [188]. In [95],
we decided in favor of moment matching as a numerically stable and computationally inexpen-
sive way. Nevertheless, we discuss both moment matching and ML estimation in the following
paragraphs.

For the moment matching strategy, we match the variance and Mardia’s multivariate kurto-
sis coefficient [193, 120] to their empirical estimates. Formally, let X denote a random variable
following a MPE distribution with parameters n, β and Σ, i.e. X ∼ MPEn(β,Σ). We first de-
termine β̂ and then use this estimate to calculate Σ̂. Mardia’s multivariate kurtosis coefficient
γ2(X) is generally defined as

γ2(X) = E

[

(

(X − µ)T Σ−1(X − µ)
)2
]

− n(n + 2) (2.10)

which has a closed-form expression in case of Eq. (2.9)

γ2(X) =
n2Γ

(

n
2β

)

Γ
(

n+4
2β

)

Γ 2
(

n+2
2β

) − n(n + 2). (2.11)

Given an i.i.d. random sample x1, . . . , xN fromMPEn(β,Σ), we can calculate the sample version
γ̂2 of γ2 as

γ̂2(x1, . . . , xN) =
1
N

N∑

i=1

(

xT
i S

−1xi

)2
− n(n + 2), (2.12)

where S denotes the classic sample covariance. By matching Eqs. (2.11) and (2.12) we can then
compute the moment estimate β̂2. Next, we can estimate Σ based on the theoretical expression
for the variance V(X) [58]

V(X) =
2

1
β Γ
(

n+2
2β

)

nΓ
(

n
2β

) Σ. (2.13)

As we can see, Σ is proportional to the covariance matrix. To obtain Σ̂, we use the moment
estimate β̂ and the sample covariance S as an estimate of V(X). Then, it is straightforward to
compute Σ̂ from Eq. (2.13).

In order to determine the ML estimates we first formulate the Likelihood equation as

l(β,Σ; x1, . . . , xN) =

N∏

i=1

βΓ(n
2 )

π
n
2 2

n
β |Σ|

1
2 Γ
(

n
2β

) exp
{

−
1
2

[

xTΣ−1x
]β

}

. (2.14)

Taking the logarithm leads to

L(β,Σ; x1, . . . , xN) = N log Γ
(n

2

)

−N log Γ
(

n

2β

)

+N log(β)−

N log
(

π
n
2
)

−
Nn

β
log(2) −

N

2
log(|Σ|) −

1
2

N∑

i=1

(xT
i Σ−1x)β

(2.15)

2In the actual implementation, we formulate moment matching as a numerical root-finding problem and then use
MATLABs fzero function to solve it.
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which can now be used to calculate the partial derivatives w.r.t. β and Σ using basic algebra
and matrix calculus, i.e.

∂

∂β
L(β,Σ; x1, . . . , xN) =

1
β

[

N+
Nn

β

(

log(2) +ψ

(

n

2β

))]

−

1
2

N∑

i=1

log(xT
i Σ−1x)(xT

i Σ−1x)β

(2.16)

and
∂

∂Σ
L(β,Σ; x1, . . . , xN) = −

N

2
Σ−1 +

β

2

N∑

i=1

(xT
i Σ−1x)β−1Σ−1xix

T
i Σ−1. (2.17)

The solutions β̂ and Σ̂ to both equations are the ML estimates. It is worth noting, that after
setting the right-hand side of Eq. (2.17) to zero and performing some straightforward manipu-
lations (i.e. multiplying two times by Σ) we obtain

Σ =
β

N

N∑

i=1

xix
T
i

(

xT
i Σ−1xi

)β−1
(2.18)

which allows to employ a fix-point iteration directly (e.g. Picard Iteration aka successive sub-
stitution). Since it is hard to prove that Eq. (2.18) actually is a contraction – which would
guarantee convergence to the fixpoint – we follow an alternative technique to obtain the esti-
mates. We directly try to minimize the negative Log-Likelihood, i.e. −L(β,Σ; x1, . . . , xN), using
a gradient descent approach. This is an optimization problem with non-linear constraints, since
we have to satisfy the requirements that Σ must be positive definite and symmetric and β > 0.
We already have the derivatives of the log-likelihood function w.r.t. β and Σ, see Eq. (2.16)
and (2.17). To take care of the positive definiteness criteria, we use the Sylvester criterion [126]
which requires that all leading principal minors of Σ are positive. This is a necessary and suffi-
cient condition to guarantee positive definiteness. Eventually, we have (n+ 1)/2− 1 unknowns
to solve3 (since Σ is symmetric).

2.2.4 Quantifying the Goodness-of-Fit

In order to quantify the GoF of the presented GGD and Cauchy model, we conduct a series
of Chi-Square GoF tests using the images of the UCID database. Each RGB channel is decom-
posed separately by a three-scale DWT and the test statistic is computed using the transform
coefficients of each detail subband. In contrast to the Chi-Square tests we conducted in [101],
we slightly modify the test setup here to account for different sample sizes on each decompo-
sition level. The problem with the test in [101] can be formulated as follows: first, the type
of GoF test setup we use here can be termed an Accept-Support testing setup. This means that
the null-hypothesis represents what we actually believe (i.e. the observations stem from the
distribution we assume). Second, we know that increasing the sample size likewise increases
the power of a hypothesis test. Hence, if the sample size is too large, we will inevitably decide
against the null-hypothesis even in cases when the model represents a good fit to the data. This
happens because even minor deviations from the null-hypothesis are rigorously penalized in

3In the actual implementation of this estimation procedures, the non-linear optimization problem with non-linear
constraints is solved by means of MATLAB’s fminbnd routine.
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Database Level
Model

GGD Cauchy

UCID
1 36.64 62.04
2 35.14 62.55
3 34.73 71.62

Stex
1 0.82 41.63
2 1.23 43.91
3 2.34 32.79

Vistex (small)
1 0.57 44.64
2 0.94 43.96
3 2.34 34.74

Vistex (full)
1 0.87 42.68
2 1.20 36.33
3 2.26 28.60

Outex
1 1.76 70.95
2 0.60 55.24
3 0.76 32.06

Table 2.1: Percentage of rejected null-hypotheses of Chi-Square GoF tests (at 5% significance), averaged
over all subbands of a DWT decomposition level.

case of large sample size. Due to subsampling, the number of DWT coefficients on successive
scales differs by a factor of four. Hence, we have 16 times more coefficients on level one as we
have on level three for example. The aforementioned sample size effect on the test power would
therefore inevitably lead to more rejections of the null-hypothesis at lower decomposition lev-
els. In order to deal with that problem, we modify the GoF setup such that we limit the sample
size to N samples, randomly selected from each subband. In detail, we use uniform sampling
without replacement. The percentage of rejected null-hypotheses on each DWT decomposition
level for the GGD and Cauchymodel is listed in Table 2.1 usingN = 500. As expected, the GGD
is a quite good model for the coefficients of DWT decomposed images. The Cauchy distribution
on the other hand leads to higher rejection rates, however, we emphasize that this model is only
supposed to be a better approximation to the coefficients than the Gaussian model. In contrast
to [101], we further notice that the rejection rates are now rather stable over the decomposition
levels.

Testing the GoF of the MPE Distribution

To the best of our knowledge, there exists no published GoF test for the MPE distribution,
although Gomez et al. [58] sketch a possible test strategy. We first discuss this idea and then
introduce a novel GoF test which is based on a generic test for multivariate normality. The
approach proposed by Gomez et al. is a three-stage strategy which relies on the stochastic
representation of the MPE distribution. Unfortunately, no clear description of how to perform
the three stages is given by the authors. In the following, we discuss a possible implementation
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of the test. We know that in case X ∼ MPEn(x;β,Σ), then

X ∼ rATu (2.19)

where r is a realization of the random variable R ∼ fR(r;β) with p.d.f.

fR(r;β) =
n

Γ
(

1 + n
2β

)

2
n
2β

rn−1 exp
{

−
1
2
r2β

}

1(0,∞)(r). (2.20)

The vector u ∈ Rn is uniformly distributed on the unit sphere and A is a lower triangular
matrix such that Σ = AT A. Based on this stochastic representation of the MPE distribution and
the moments of R [58], the first step of the GoF procedure is to test whether

Z =
(

(x − µ)T Σ−1(x − µ)
)β

(2.21)

follows a Gamma distribution [89] with shape parameter 2 and scale parameter n/2β. This can
easily be accomplished by means of a Chi-Square GoF test. In the second step, we have to test
whether

u =
Σ̂

− 1
2 x

∥

∥

∥

∥

Σ̂
− 1

2 x)

∥

∥

∥

∥

(2.22)

is uniformly distributed on the unit sphere in Rn (in fact, it is the unit ball in the n-dimensional
Euclidean space). We perform this task bymeans of a Rayleigh test for uniformity on the sphere,
originally proposed by Mardia and Rupp [121]. In the last step, we test if the random variable R
is independent of u. For that purpose, we employ a very recently proposed test by Gretton et al.
[60]. Probably the most crucial step is the fusion of the three test results. We choose the rather
strict strategy to reject the overall null-hypothesis, in case one test shows evidence against its
null-hypothesis. At the end of this section, we will assess the size and power of this test. To the
best of our knowledge, no such study has been conducted so far.

As a second, novel alternative to assess the GoF of the MPE distribution, we propose a
modification of the GoF test for a multivariate normality proposed by Smith & Jain [170]. The
components of the test procedure are outlined in Fig. 2.10. The left part shows the Monte-
Carlo variant of the test which is based on an estimate of the p-value. The right part shows the
second variant which relies on the asymptotic distribution of the test statistic under the null-
hypothesis. In [170], the null-hypothesis is that the observations x1, . . . , xN are drawn from a
multivariate Gaussian distribution N(µ,Σ) with parameter vector Θ = [µ Σ]. Consequently,
the null-hypothesis of our MPE GoF test is that the data is drawn from a MPE distribution
MPEn(β,Σ) with parametersβ andΣ, henceΘ = [β Σ]. According to Fig. 2.10, the critical parts
of the GoF test are the estimation part, the sampling part and the computation of a suitable test
statistic. Estimation and sampling in the multivariate Gaussian case is straightforward and a
well covered topic in literature. Estimation of the MPE parameters has already been discussed
in Section 2.2.3. Hence, the remaining parts are the sampling step in case of theMPE distribution
and the definition of a test statistic. Both topics are covered next:

Sampling from a MPE distribution We can rely on the stochastic representation of the MPE
distribution, given in Eq. (2.19). For our purpose, we assume µ = 0. In order to gener-
ate a random sample from a MPE distribution MPEn(β,Σ) we have to draw a random
sample u1, . . . ,uN from a uniform distribution on the n-dimensional unit sphere first. We
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Figure 2.10: Outline of the generic GoF test setup proposed by Smith & Jain [170], originally intended to
test for multivariate normality.

then perform a Cholesky decomposition of Σ to obtain AT and generate another random
sample r1, . . . , rN from the distribution given by the p.d.f. in Eq. (2.20). Eventually, we
use

∀i, 0 < i < N : xi = riA
Tui (2.23)

to generate a MPE random sample x1, . . . , xN of sizeN. To obtain u1, . . . ,uN, several ways
are possible. We choose the simple strategy of generating a random vector ui from a
multivariate Gaussian distribution N(0, 1) and then normalize each element of the vec-
tor by (

∑
j u

2
ij)

1/2. Due to the radial symmetry of the multivariate Gaussian distribution,
this gives a random vector which is uniformly distributed on the unit sphere in the n-
dimensional Euclidean space. The process of generating the random sample r1, . . . , rN is
slightly more involved. In order to use the classic inversion method, we first need to de-
termine the quantile function F−1

R (i.e. the inverse c.d.f.) corresponding to the p.d.f. given
in Eq. (2.20). First, we derive the c.d.f. as

FR(y;β) =

∫y

0
fR(x;β)dx = 1 −

Γ
(

n
2β , y2β

2

)

Γ
(

n
2β

) . (2.24)

Inverting the c.d.f. gives the desired result

F−1
R (u;β) = 2

1
2β

[

P−1
u

(

n

2β
, 1 − u

)] 1
2β

(2.25)

where Pu(a, x) is defined as in Eq. (2.3). We can then generate ri by using ri = F−1
R (ui;β)

with ui ∼ U(0, 1).

Defining a suitable test statistic In [170], Smith & Jain propose to test for multivariate normal-
ity by first computing the Euclidean Minimum Spanning Tree (EMST) of the pooled sample

∀i, 0 < i 6 2N : zi =

{
xi, 0 < i 6 N

yi, N < i 6 2N
(2.26)
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(a) H 6= G,T = 6 (b) H = G,T = 2

Figure 2.11: Illustration of the two-sample hypothesis test proposed by Henze [68] based on the
number of nearest neighbor coincidences. In case the samples stem from the same population (i.e.
H = G), we expect the test statistic T to be low, while in case the samples stem from different
populations (i.eH 6= G) we expect the test statistic to be high.

The sample x1, . . . , xN denotes the collection of original observations, whereas the sam-
ple yi, . . . ,yN is drawn from a multivariate Gaussian distribution with parameters fitted
on the basis of xi. The test statistic T is defined as the number of edges connecting ver-
tices from different samples. This idea was first introduced by Friedman & Rafsky [49] in
the field of multivariate two-sample hypothesis testing, where the objective is to quantify
whether two samples stem from the same population without making any assumptions
about the distribution family. In the same context, a similar strategy is suggested byHenze
[68], based on the computation of the number of nearest neighbor coincidences. A graph-
ical visualization of the NN coincidences idea is shown in Fig. 2.11, where H signifies the
distribution of the first sample (marked as blue squares) and G signifies the distribution
of the second sample (marked as red discs). The value of the test statistic when we only
consider two elements of each sample is given as T . The basic idea of the EMST and NN
coincidences approach is the same: given that the null-hypothesis is true, we (i) expect
that the number of EMST edges connecting vertices from different samples to be high and
(ii) the number of nearest neighbor coincidences to be low.

When using the EMST approach for testing multivariate normality as in [170], we conse-
quently expect high values of T in case the observations xi actually follow a multivariate
Gaussian distribution and vice versa. From Friedman & Rafsky [49], we know that in case
the null-hypothesis is true, the test statistic T follows a Gaussian distribution with mean
µ and standard deviation σ. Hence, it is straightforward to compute a p-value and reject
the null-hypothesis if the p-value is less than the fixed significance level α. However, it
is worth noting that the sampling procedure to generate yi introduces bias, because sam-
pling is based on the distribution parameters fitted on the basis of xi. Since the EMST
and NN coincidences approach rely on the assumption of independent random samples,
the resulting GoF tests will inevitably loose power. A reasonable way to circumvent the
independency problem is to estimate the critical region of the test using aMonte-Carlo ap-
proach, illustrated in Fig. 2.10a. The iteration in the right branch of Fig. 2.10a is repeated
W times and the p-value estimate is finally obtained by

p̂ =
#{Ti > T∗} + 0.5

W + 1
. (2.27)

To construct a GoF test for the MPE distribution similar to the one of Smith & Jain, we use
(i) the gradient decent approach of minimizing the negative Log-Likelihood to estimate
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the MPE parameters, (ii) the MPE sampling procedure outlined above and (iii) the NN co-
incidences approach of [68] to obtain a test statistic T . To provide full detail, let z1, . . . , zM

denote the pooled sample (i.e. M := 2N); further, let m denote a function returning the
sample membership of zi and letNNi(r) denote the r-th nearest neighbor of zi (in the Eu-
clidean norm). Then, the formal description of the NN coincidences test statistic is given
by

Tk,M =
1
Mk

M∑

i=1

k∑

r=1

1i(r) (2.28)

where 1i(r) denotes the indicator function of the event that m(zi) = m(NNi(r)). Ac-
cording to Schilling [160], we have the asymptotic (i.e. M → ∞) result that in case the
null-hypothesis (denoted by H0) is true, the term

√
Mk

(

Tk,n − µTk,M|H0

σTk,M|H0

)

∼ N(0, 1) (2.29)

follows a standard normal distribution with

µTk,M|H0 = λ21 + λ22, σ2Tk,M|H0
= λ1λ2 + 4λ21λ

2
2

[

1 −

(

2k
k

)

2−2k
]

(2.30)

and λi = N/M (i.e. in our case λ1 = λ2 = 0.5). By using Eqs. (2.29) and (2.30), the
p-value can be calculated by determining P(T∗ > T |H0), i.e. the probability of obtaining
a test statistic at least as extreme as T∗. Adhering to the terminology of Smith & Jain,
we denote the test variant based on the Monte-Carlo p-value estimation approach as the
"Monte-Carlo" test and the second variant, based on the asymptotic normality of T , as the
"Normal" test.

In order to assess the quality of the proposedGoF test and the test suggested by Gomez et al.,
we conduct a study on the size, i.e. the test’s probability of falsely rejecting the null-hypothesis,
and power of the test. Regarding the methodology, both size and power are evaluated bymeans
of a Monte-Carlo strategy with M = 500 iterations for the case n = 3 (i.e. three-dimensional
observations).

Size Study In each Monte-Carlo iteration, we sample N points from a MPE3(0.5, I) distribu-
tion and determine the percentage of rejected null-hypotheses. We let the sample size N
be 200, 400 and 800. Since we do not obtain an overall p-value in case of the GoF test
of Gomez et al., we have to decide when to reject the null-hypothesis based on the out-
comes of the three stages. As mentioned before, we choose the strict way of rejecting the
null-hypothesis in case just one stage rejects its own null-hypothesis. Formally, given that
Hi, i = 1, 2, 3 denotes the outcome of stage i (i.e. Hi ∈ {0, 1}), we reject the null-hypothesis
if

∑
iHi > 0. Regarding the “Monte-Carlo” variant of our proposed GoF test, we set the

number of iterations W to 1000. Tables 2.2 and 2.3 list the estimated significance level α̂
for different sample sizes. For the Gomez et al. GoF test, we observe that the estimated
percentage of rejections α̂ is above the desired significance level α in all cases. Regarding
the two variants of our proposed GoF approach, we can see that the “Monte-Carlo” test is
quite conservative, i.e. the percentage of false positives is always below the fixed signif-
icance level. However, in case of the "Normal" test, the situation is different. Except for
N = 400, the rejection rates are always slightly above the desired level.
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Significance Sample SizeN

∑
iHi > 0

α̂

α = 0.01
200 0.030
400 0.028
800 0.014

α = 0.05
200 0.084
400 0.118
800 0.108

α = 0.10
200 0.194
400 0.212
800 0.196

Table 2.2: Rejection rates for the three-stage GoF test sketched by Gomez et al. in [58] for various
levels of α and various sample sizesN.

Significance Sample SizeN
“Monte-Carlo” "Normal"

α̂ α̂

α = 0.01
200 0.002 0.022
400 0.001 0.002
800 0.001 0.018

α = 0.05
200 0.022 0.063
400 0.012 0.014
800 0.053 0.069

α = 0.10
200 0.044 0.132
400 0.026 0.048
800 0.084 0.1520

Table 2.3: Rejection rates for the two variants of the proposed MPE GoF test for various levels of α
and different sample sizesN.

Power Study To assess the power of the GoF tests, we sample from a two-component mixture
of MPE distributions. Given that p(x;βi,Σi) := MPE3(x;βi,Σi), the mixture p.d.f. is
given by

p(x;π1,π2,β1,β2,Σ1,Σ2) =

2∑

i=1

πip(x;βi,Σi) with
∑

i

πi = 1. (2.31)

We start from an equal parameters β1 = β2 = 0.5,Σ1 = Σ2 and then move the shape
parameter β2 of the second mixture component away from the original choice, as illus-
trated in Fig. 2.12. The component weights are set to π1 = π2 = 0.5. For each param-
eter setting along the line we perform M Monte-Carlo iterations for each sample size
N ∈ {200, 400, 800} and determine the number of rejected null-hypotheses. Figures 2.13
and 2.14 show the corresponding power plots, where the x-axis shows the shape param-
eter value of β2 and the y-axis shows the percentage of rejected null-hypotheses. In case
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β1 = 0.5, β2 = 0.5 β1 = 0.5, β2 = 3

β2 = 0.6 β2 = 2.9

Figure 2.12: Illustration of the power study procedure for scale alternatives. The starting model is a
mixture of two MPE distributions with β1 = β2 = 0.5, Σ1 = Σ2 = I and equal weights π1 = π2 = 0.5.
As we progress from left to right, the shape parameter β2 of the second mixture component is
increased by a stepsize of 0.1.
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Figure 2.13: Power vs. β2 for two choices of how to combine the three-stages of the Gomez et al.
GoF test. The plot on the left-hand side shows the results of the rejection criterion we select for our
tests.

of the GoF test of Gomez et al. (see Fig. 2.13), we observe that our fusion strategy of
the three stages leads to reasonable power, even at moderate sample size, i.e. N = 200.
For comparative reasons, we additionally show a power plot for the case of requiring
evidence against the null-hypothesis in at least two of the three stages. In this case, the
test exhibits almost no power at all and renders this setting useless. Regarding the two
variants of our proposed GoF test, both exhibit reasonable power with the "Normal" test
showing high power even at moderate sample size. The higher power can be explained
by referring to Table 2.3, where the "Normal" test exhibits less conservative behavior than
the "Monte-Carlo" test.

After completing the size and power study, we finally turn to the actual application of the
GoF test. We apply the test to the DWT detail subband coefficients of our database images. To
obtain the same power for eachDWTdecomposition level, we uniformly sample 500 coefficients
from each subband and set the significance level to α = 0.05. We choose the "Normal" GoF test
variant in all cases. In addition to the estimation of both MPE parameters, we test against the
fix choice of β = 1, i.e. multivariate Gaussian, for comparative reasons. The rejection rates are
listed in Table 2.4. Apparently, the MPE distribution is a quite good model for textured images
and slightly worse for natural images. However, compared to the GoF results for β = 1, the
MPE distribution is definitely the more suitable statistical model to capture the non-Gaussian
nature of the coefficients.
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Figure 2.14: Power vs. β2 for the two variants of the proposed GoF test, i.e. using either the Monte-
Carlo approach to approximate the critical region or the Normal approximation of the test statistic.

Model
Databases

Stex Vistex (full) Outex UCID

MPE 25.09 35.13 11.15 56.18
Gaussian (β = 1) 57.13 73.19 39.66 98.97

Table 2.4: Rejection rates of the MPE "Normal" GoF test at 5% significance for several image databases.
The second row lists the GoF test results of the same test when we fix the shape parameter to β = 1, i.e.
multivariate Gaussian.

2.3 Complex Wavelet Transform SubbandModels

Since two major parts of this thesis, namely Chapters 3 and 4 are concernedwith image analysis
applications, we select the Dual-Tree Complex Wavelet transform [85, 86] (DTCWT) as a second
wavelet transform variant due to its advantages over the DWT. In particular, the DTCWT over-
comes two shortcomings of the DWT: lack of shift-invariance and lack of directional selectivity,
as it is vividly illustrated and explained in [86] or [162]. These shortcomings are especially rele-
vant for image analysis purposes. Lack of shift-invariance implies that singularities at different
locations in an image lead to different representations in the wavelet domain (i.e. different coef-
ficients). Hence, wavelet coefficients representing an edge along an object contour for example,
are not necessarily large across all scales which causes ringing artifacts when reconstruction is
performed using only a subset of the coefficients. Of course, the perfect reconstruction property
guarantees that all artifacts are canceled when computing the reconstruction using all coeffi-
cients. The technical reason for the shift-dependency problem is that the wavelet and scaling
filters which are used to implement the DWT have finite support and the coefficients are down-
sampled by two after each decomposition stage. As a matter of fact, shift-dependency is a
severe deficiency in the context of image analysis. The second shortcoming – lack of direction-
ally selectivity – is related to the fact that the filters of the DWT are real functions and are thus
supported on both sides of the frequency axis. Since the 2-D DWT is usually implemented by
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Figure 2.15: Exemplary texture image Tile.0000 including magnitude images of the six DTCWT detail
subbands (±15◦,±45◦ and ±75◦ in counter clockwise order).

separate row- and column filtering (which is equivalent to using tensor-product wavelets), this
causes ambiguities in distinguishing features oriented along ±45◦. All other features oriented
mostly along the vertical or horizontal direction are lumped in the vertical and horizontal de-
tail subbands. Since orientation information can be an important characteristic for many texture
images for example, better directional selectivity is desired. Both deficiencies are eliminated to
a certain extent by using the DTCWT, at low computational overhead. The basic idea is to use
complex wavelets which are composed of two real wavelets forming an approximate Hilbert
transform pair. Since this construction ensures that negative frequencies are suppressed, alias-
ing effects are reduced and thus approximate shift-invariance is guaranteed. Further, a higher
degree of directional selectivity is achieved with six complex detail subbands at each decom-
position stage (compared to three in case of the DWT). The detail subbands are oriented along
approximately ±15◦,±45◦ and ±75◦. An exemplary texture image (Tile.0000 [31]) and the six
magnitude images of the detail subbands at the first scale are shown in Fig. 2.15. To emphasize
the image details captured by each subband, all coefficients with absolute values below the 0.9
quantile are set to zero.

In the following, we consider statistical models pX for the coefficient magnitudes |xi| of the
DTCWT detail subbands and adhere to all three assumptions of Section 2.2. We then discard
Assumptions 1 and 2 and introduce a joint statistical model which is flexible enough to even
capture the association among coefficient of different color channels. A first, straightforward
approach for modeling the detail subband coefficient magnitudes is proposed by Shaffrey et al.
[163]. The authors employ the Rayleigh distribution together with HiddenMarkov Trees (HMT)
for the purpose of image segmentation. The theoretical reasoning of this model is that in case
the real and imaginary part of a coefficient follow a zero-mean Gaussian distribution with equal
variance σ2, it is a well known fact that the magnitude follows a Rayleigh distribution with
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shape parameter β := σ. The p.d.f. of a Rayleigh distribution is given by [89]

pX(x;β) =
x

β2 exp
(

−
x2

2β2

)

, 0 < x < ∞ (2.32)

with β > 0. In Fig. 2.16 we illustrate the shape of the Rayleigh p.d.f. and the characteristic
coefficient histograms which can be observed in case of texture images. ML parameter estima-
tion of β has a closed-form solution which can be found in [89]. In a very recent work, Rahman
et al. [151] studied the statistics of DTCWT detail subband coefficients restricted to the decom-
position of Gaussian distributed signals. The authors show that the real and imaginary part
can actually be modeled by zero-mean Gaussian distributions for decomposition levels greater
than one and hence allow to employ the Rayleigh model for the magnitudes. On the first level,
however, they propose to use a Generalized Gamma distribution [174] instead. The reason for
switching the statistical models is that on the first level of the DTCWT it is necessary to use dif-
ferent filter sets (e.g., see [162]) which violate the Hilbert transform property. As a result, the real
and imaginary parts no longer show equal variances and hence prevent to employ the Rayleigh
distribution to model the magnitudes. Although the results presented in [151] are theoretically
interesting, they lack practical application, since we rarely observe a Gaussian distributed signal
in image processing. The effect of the deviation from Gaussianity is apparent by looking at the
bad fit of the Rayleigh model in Fig. 2.16. The idea of using a Generalized Gamma distribution
to model the coefficient magnitudes is a good starting point, though. Apparently, candidate
models are positively skewed distributions (i.e. skewed to the right) which are often used in
reliability and life-span modeling [23]. Similar distributions are also employed in modeling the
amplitude statistics of Synthetic Aperture Radar (SAR) data (e.g. see [130, 93]). The use of the
Generalized Gamma distribution, however, is not widespread due to the difficulties in param-
eter estimation (e.g., see [172]). In the following, we present two reasonable statistical models
which are both special cases of the Generalized Gamma distribution, allowing computationally
efficient parameter estimation. Further, we show that the models are flexible enough to capture
the magnitude distributions.

2.3.1 Weibull Distribution

The first model we consider is the two-parameterWeibull distributionwhich includes the Rayleigh
distribution as a special case. This model is a reasonable choice since there are more degrees of
freedom to adapt to the underlying data. In [98], we exploited the Weibull distribution parame-
ters for the purpose of medical image classification and in [101, 61] this model was successfully
employed in texture image retrieval. The p.d.f. and c.d.f. of a Weibull distribution, as given in
[89], are

pX(x;α,β) =
α

β

(

x

β

)α−1

exp
{

−

(

x

β

)α}

, 0 < x <∞ (2.33)

and

FX(x;α,β) = 1 − exp
{

−

(

x

β

)α}

(2.34)

with shape parameter α > 0 and scale parameter β > 0. For α = 2 and β =
√
2β, Eq.

(2.33) reduces to the Rayleigh distribution. The inverse c.d.f. has the closed form expression
F−1(u;α,β) = β[− log(1 − u)]1/α. Regarding parameter estimation of α and β, we discuss both
moment matching and ML estimation. First, lets assume that we have an i.i.d. random sample
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Figure 2.16: Exemplary DTCWT coefficient histograms (i.e. |xi|) of the +75◦ subband on DTCWT level
two of four texture images together with fitted Rayleigh p.d.f.s.

x1, . . . , xN drawn from a two-parameter Weibull distribution. According to [89], the MLE of α
is the solution to g(α) = 0 with

g(α) :=

N∑

i=1

xα
i log(xi) − K

N∑

i=1

xα
i −

1
α

N∑

i=1

xα
i (2.35)

and K := 1
N

∑N
i=1 log(xi). In order to solve Eq. (2.35) using Newton-Raphson root finding, we

first determine the first derivative g ′(α) as

g ′(α) :=
∂

∂α
g(α) =

N∑

i=1

xα
i log(xi)

2−

K

(

N∑

i=1

xα
i log(xi)

)

+
1
α2

N∑

i=1

xα
i −

1
α

N∑

i=1

xα
i log(xi).

(2.36)
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The MLE is then obtained by using the update step α̂n = α̂n−1 − g(α̂n−1)/g
′(α̂n−1) for n > 2.

Subsequently, the MLE of β has the explicit expression:

β̂ =

(

1
N

N∑

i=1

xα̂
i

)1/α̂

(2.37)

The starting value α̂1 is usually computed by moment matching. Unfortunately, even that re-
quires a numerical procedure, since the moment parameter estimate α̂ is the solution to [23]

Γ3 − 3Γ2Γ1 + 2Γ 31
(

Γ2 − Γ 21
)3/2 − a3 = 0, (2.38)

where Γk := Γ(1 + k/α) and

a3 :=
1
N

∑N
i=1(xi − x)3

[

1
N

∑N
i=1(xi − x)2

]3/2 (2.39)

denotes the sample skewness. A first approximation of α̂ to solve Eq. (2.39) can be obtained
from a α-versus-a3 lookup-table and linear interpolation. The moment estimate of β̂ is then
computed by

β̂ =
s

(

Γ̂2 − Γ̂ 21
)

1
2

(2.40)

where s denotes the sample standard deviation and Γ̂k signifies that we use the moment esti-
mate α̂ to compute Γ1 and Γ2. Finally, it is worth noting that computational difficulties can arise
for ML estimation in cases where α < 2.2 [23].

We next present an alternative estimation method which is computationally more attractive
than the direct ML estimation approach from above. This estimation strategy is based on the
theoretical result, that if a random variable X follows a Weibull distribution, then the random
variable Y = log(X) follows an Extreme Value (EV) distribution of type I (i.e. Gumbel distri-
bution) [118]. This result can easily be verified by exploiting the fact that the random variable
transformation t(X) is the natural logarithmwhich is monotonically increasing, continuous and
differentiable. Hence, we have FY(y) = P(Y 6 y) = P(X 6 t−1(x)) = FX(t−1(y)) which in our
case (i.e. t(x) = log(x) and t−1(x) = exp(x)) leads to

FY(y) = FX(exp(y)) (2.41)

= 1 − exp
{

−

[

exp(y)

β

]α}

(2.42)

= 1 − exp
{

−

[

exp
{
y− µ

σ

}]}

(2.43)

using the substitution σ := 1/α and µ := log(β) in Eq. (2.43). The last expression in this deriva-
tion is the c.d.f. of a Gumbel distribution. Given that we set yi := log(xi), the corresponding
p.d.f. follows as

pY(y;µ,σ) =
1
σ
exp

(

y− µ

σ

)

exp
{

− exp
(

y− µ

σ

)}

, −∞ < y < ∞ (2.44)
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with location parameter 0 < µ < ∞ and scale parameter σ > 0. This extreme-value distribution
might be thought of as a log-Weibull distribution [23]. The MLE of σ requires a numerical
solution to f(σ) = 0 with

f(σ) := y− σ−

∑N
i=1 yi exp

(

−yi

σ

)

∑N
i=1 exp

(

−yi

σ

) (2.45)

where y denotes the sample mean of the observations. Again, to derive the update step of the
Newton-Raphson algorithm, we first determine the derivative of f(σ) w.r.t. σ as

f ′(σ) :=
∂

∂σ
f(σ) =

1
σ2

N∑

i=1

y2i exp
(

−
yi

σ

)

+

N∑

i=1

exp
(

−
yi

σ

)

+
1
σ

N∑

i=1

yi exp
(

−
yi

σ

)

− y
1
σ2

N∑

i=1

yi exp
(

−
yi

σ

)

(2.46)

which then allows to formulate the update step as σ̂n = σ̂n−1 − f(σ̂n−1)/f
′(σ̂n−1) for n > 2. In

contrast to the problematic computation of the starting value α̂1 in Eq. (2.38) which we obtained
by moment matching, the starting value σ̂1 can be easily obtained from the explicit expressions
of the moment estimates [23]

σ̂ =
1
π

√
6s ≈ 0.779697s and µ̂ = y− γσ̂, (2.47)

where γ denotes the Euler-Mascheroni constant, i.e. γ ≈ −0.57. Eventually, we can use the
moment estimate of σ to start the Newton-Raphson algorithm and obtain the corresponding
ML estimate. Inserting the ML estimate of σ into

µ̂ = σ̂ log

(

1
N

N∑

i=1

exp
(yi

σ̂

)

)

(2.48)

gives the ML estimate of µ. The only thing left to do is to transform the parameter estimates µ̂
and σ̂ back to the estimates α̂ and β̂ of the Weibull distribution. From the substitution we used
in Eq. (2.43) we deduce

α̂ =
1
σ̂

and β̂ = exp(µ̂). (2.49)

To visualize the GoF of the Weibull distribution, Fig. 2.17 shows a set of Q-Q plots for the
same DTCWT detail subband coefficients of Fig. 2.16. As we can see, the points approximately
follow the dashed red line which indicates that the Weibull model is a reasonable choice here.

2.3.2 Gamma Distribution

A second, alternative model which also occurs in the literature of reliability and life span mod-
eling is the two-parameter Gamma distribution. The Gamma distribution has been proposed as
an alternative to the Rayleigh distribution for modeling the magnitudes of Gabor filter outputs
[123] for instance. The p.d.f. and c.d.f., as given in [89], are

pX(x;α,β) =
β−αxα−1

Γ(α)
exp

(

−
x

β

)

, x < 0 < ∞ (2.50)
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Figure 2.17: Exemplary Q-Q plots for GoF of the Weibull distribution.

and

FX(x;α,β) = Pl

(

a,
x

β

)

(2.51)

with shape parameter α > 0 and scale parameter β > 0, respectively. The term Pl(a, x) denotes
the regularized (lower) incomplete Gamma function, i.e.

Pl(a, x) =
1
Γ(a)

∫x

0
ta−1 exp(−t)dt. (2.52)

The inverse c.d.f. can be computed by F−1
X (u;α,β) = βP−1

l (α, 0,u) which is the numerical
solution for x to the equation u = Pl(α, 0, x/β). In order to estimate the parameters α and
β, we follow the approach presented by Choi & Wette [20]. The authors already provide the
Newton-Raphson update step to compute the ML estimate of α as

α̂n = α̂n−1 −
log(α̂n−1) −ψ(α̂n−1) −M

1/α̂n−1 −ψ
′

(α̂n−1)
, (2.53)

for n > 2. Here, ψ and ψ ′ denote the Digamma and Trigamma function [1], resp., and M is
defined as

M := log(x) −
1
N

N∑

i=1

log(xi). (2.54)
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Given the ML estimate of α, the ML estimate of β has the closed-form expression

β̂ =
µ̂

x
. (2.55)

In order to reduce the computational overhead to evaluate the Digamma and Trigamma func-
tion we employ a lookup-table approach and linear interpolation. A starting value α̂1 is ob-
tained from the moment estimates [45]

α̂1 := α̂ =

(

x

s

)2

and β̂ =
s2

x
. (2.56)

We highlight the fact, that no computationally expensive operations have to be performed to
estimate the starting values. To visualize the GoF of the Gamma distribution, Fig. 2.18 shows
a set of Q-Q plots for the DTCWT detail subband coefficients we used in the previous sections.
Apparently, the Q-Q plots are similar to the Weibull Q-Q plots in Fig. 2.17. In Section 2.3.4 we
will show that the Gamma model is in many cases a more reasonable choice than the Weibull
model.
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Figure 2.18: Exemplary Q-Q plots to visualize the GoF of the Gamma distribution.
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2.3.3 Copula Modeling

As a last statistical model for the DTCWT detail subband coefficients, we present an approach
which accounts for the association of transform coefficients between subbands of the same scale
and between transform coefficients of subbands from different color channels. The only inde-
pendency assumption of Section 2.2 we retain is the independency of transform coefficients
across scales. Since we have already discussed the Weibull and Gamma distribution as suit-
able models for the transform coefficient magnitudes, we obviously favor a joint model which
incorporates this information. A possible and elegant way to achieve this goal is to use the
mathematical construct of copulas. Most of the following theoretical foundations are assem-
bled from [43] and the classic textbooks on copulas by Joe [77] and Nelsen [137]. From a formal
point of view a copula is a n-dimensional distribution function C : [0, 1]n → [0, 1] with uniform
marginals, satisfying the following requirements:

1. ∀u ∈ [0, 1]n : C(u) = 0, if at least one coordinate ub of u is 0

2. ∀u ∈ [0, 1]n : C(1, . . . , 1,ub, . . . , 1) = ub

3. ∀a,b ∈ [0, 1]n, a 6 b :
∑

c sgn(c)C(c) > 0, where c is a vertex of the n-Box defined by the
Cartesian product of the intervals [a1,b1] × [a2,b2] × · · · × [an,bn] and a 6 b :⇔ ∀b ∈
{1, . . . ,n} : ab 6 bb.

For our purpose, we will only consider random vectors X = (X1, . . . ,Xn) with continuous
and strictly increasing marginal distribution functions. In [169], Sklar showed that given a n-
dimensional distribution function FX of X with marginal distribution functions F1, . . . , Fn there
exists a n-dimensional copula C such that

FX(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), (2.57)

exploiting the fact that every random variable can be transformed to a uniform random vari-
able by its probability integral transform [156], i.e. the mapping Rn → [0, 1]n, (x1, . . . , xn) 7→
(F1(x1), . . . , Fn(xn)). In other words, a copula can be considered as the distribution function of
the Probability Integral Transformed (PIT) margins. Since we assume that the marginal distribu-
tions are absolutely continuous, the copula C is uniquely determined on [0, 1]n. As a corollary
of Sklar’s theorem it follows that given a n-dimensional distribution function FX with margins
F1, . . . , Fn and copula Cwe have the relation

C(u) = FX(F−1
1 (u1), . . . , F−1

n (un)) (2.58)

where F−1
i denotes the quantile functions and u = [u1 · · ·un] ∼ U([0, 1]n). Regarding the process

of finding a suitable statistical model formultivariate observations, using the copula framework
brings along a convenient simplification: the process of modeling the marginal distribution
functions is completely decoupled from the process of modeling the association structure. This
is a direct consequence of Sklar’s theorem and allows to thoroughly adopt the findings we
already obtained for the marginal distributions in Sections 2.3.1 and 2.3.2.

Before we discuss the choice of copula, we first assess the structure and strength of associa-
tion across transform coefficients of subbands of the same scale and on different color channels
by means of Chi-plots, shown in Fig. 2.19. We select a subset of all possible subband com-
binations to show the most prominent examples of association. In general, we observe three
different types of association: (i) the weakest form of association occurs between coefficients of
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subbands capturing nearly orthogonal details on different color channels, shown in the bottom-
left plot; (ii) on the contrary, the strongest association can be observed between coefficients of
subbands oriented at the same angle but different color channels, shown in the top left-hand
plot; (iii) coefficients of subbands oriented at opposite angles on different color channels exhibit
association in between the two extremes, shown in the top and bottom right-hand plots.
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Figure 2.19: Chi-plots for coefficient magnitudes of various subband combinations of the texture image
Bark.0008 (Vistex) on DTCWT level two.

We select two members of the family of elliptical copulas to capture the dependency struc-
ture between the transform coefficients: the Gaussian copula and the Student t copula. Elliptical
copulas arise from the family of elliptical distributions. In fact, they are the copulas of ellipti-
cal distributions and inherit all the properties such as simple simulation of random numbers
or well-known parameter estimation procedures for example. The copula of the multivariate
Gaussian distribution with linear correlation matrix R (i.e. diagR = 1) is defined as

C(u1, . . . ,un;R) = Φ(Φ−1(u1), . . . ,Φ−1(un);R) (2.59)

where Φ denotes the standard multivariate Gaussian distribution function and Φ−1 denotes
the quantile function of the standardized univariate Gaussian distribution. In the same manner,
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the Student t copula is defined as

C(u1, . . . ,un;R,ν) = TR,ν(t−1
ν (u1), . . . , t−1

ν (un)) (2.60)

where TΣ,ν denotes the standard multivariate Student t distribution, R is defined as before, ν
denotes the degrees of freedom and t−1

ν denotes the quantile function of the univariate Student t
distribution. A crucial point for the copula modeling approach is the issue of parameter esti-
mation. The setting is as follows: given a random vector X = (X1, . . . ,Xn) and the associated
(parametric) copula model

FX(x1, . . . , xn;θ1, . . . ,θn,Θ) = C(F1(x1,θ1), . . . , Fn(xn;θn);Θ) (2.61)

our objective is to estimate the parameter (vectors) θi of the marginal distributions and the cop-
ula parameter (vector) Θ. In the concrete example of a Gaussian copula and Weibull margins
we have Θ = R and θi = [αi βi]. Since the p.d.f. of the copula can be deduced from

c(u1, . . . ,un) =
∂dC(u1, . . . ,un)

∂u1 · · ·∂un

(2.62)

we can write the joint p.d.f. of X as

pX(x;θ1, . . . ,θn,Θ) = c(F1(x1;θ1), . . . , Fn(xn;θn);Θ) ·
n∏

i=1

fi(xi;θi). (2.63)

Eventually, given an i.i.d. sample x1, . . . , xM we can write the log-likelihood function as

L(θ1, . . . ,θn,Θ; x1, . . . , xm) =

M∑

i=1

log c(F1(xi1;θ1), . . . , F1(xin;θn);Θ) +

M∑

i=1

n∑

j=1

log fj(xij;θj).
(2.64)

Due to the fact that it is computationally expensive and numerically cumbersome to jointly
estimate the parameters of the marginal distributions and the copula parameters (denoted as
the exact ML approach), we follow a commonly-used two-step procedure, termed the Inference
Functions from Margins (IFM) method or Canonical Maximum Likelihood (CML) approach. The
IFM approach refers to the situation where we have a parametric representation of the marginal
distributions, whereas the CML approach refers to the situation where we rely on empirical
c.d.f.s. We use the IFM method throughout this thesis. The basic idea was introduced by Joe
[77] and is based on a very simple decoupling of the estimation procedure. First, we estimate
the parameters of the parametric margins (e.g. Weibull, Gamma, etc.)

θ̂n = argmax
θ

M∑

i=1

log fn(xin;θ) (2.65)

using ML estimation. Second, we use the obtained estimates to perform the probability inte-
gral transform on the margins. Third, we estimate the copula parameters in a ML sense by
maximizing

Θ̂ = argmax
Θ

M∑

i=1

log c(F1(xi1; θ̂1), . . . , Fn(xin; θ̂n);Θ). (2.66)
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To provide a concrete example, we consider the case of using a Gaussian copula with Weibull
margins, a case which we will return to in Section 3.4 for the purpose of image retrieval. In
a first step, we deduce the p.d.f. of the Gaussian copula. For that purpose we assume that X

follows a standard multivariate Gaussian distribution with correlation matrix R. We know that
the marginal distributions are univariate standard Gaussians, i.e. Xi ∼ N(0, 1). Hence we can
try to manipulate the p.d.f.

pX(x;R) =
1

2π
n
2 |R|

1
2

exp
(

−
1
2
xTR−1x

)

(2.67)

such that we get an expression similar to Eq. (2.63). After some algebraic manipulations, it
turns out that the p.d.f. of the Gaussian copula has the form

c(u1, . . . ,un;R) = |R|−
1
2 exp

(

−
1
2
ξT (R−1 − 1)ξ

)

(2.68)

with ξ = [Φ−1(u1) · · · Φ−1(un)], or more precisely ξ = [Φ−1(F1(xi)) · · · Φ−1(Fn(xn))]. It is
then straightforward to determine the ML estimate of R as

R̂ =

M∑

i=1

ξT
i ξi (2.69)

by taking the partial derivativew.r.t. R of the log-likelihood function corresponding to Eq. (2.68)
and setting the resulting term to zero. The ML estimates of the Weibull distribution parameters
αi,βi are given in Section 2.3.1. In a similar manner, we can determine the p.d.f. of the Student
t copula, however the derivation is somewhat more involved. The p.d.f. of a n-variate Student
t distribution is given as

pX(x;R,ν) =
Γ
(

ν+n
2

)

Γ(ν
2 )(νn)

n
2 |R|

1
2

(

1 + xT R−1x
)− ν+n

2 (2.70)

with correlation matrix R and ν degrees of freedom. By factorizing out the univariate standard-
ized Student t distributions

pX(x;ν) =
Γ
(

ν+1
2

)

Γ
(

ν
2

)√
νπ

(

1 +
x2

ν

)
−ν+1

2

(2.71)

we can finally deduce the p.d.f. of the Student t copula as

p(u1, . . . ,un;R,ν) = |R|−1/2 Γ
(

ν+n
2

) [

Γ
(

ν
2

)]n

[

Γ
(

ν+1
2

)]n
Γ
(

ν
2

)

(

1 + 1
ν
ξTR−1ξ

)− ν+n
2

∏n
i=1

(

1 +
ξ2

i

ν

)− ν+1
2

(2.72)

with ξ = [t−1
ν (u1) · · · t−1

ν (un)] or againmore precisely ξ = [t−1
ν (F1(xi)) · · · t−1

ν (Fn(xn))]. Unfor-
tunately, the ML estimates of the Student t parameters R and ν have no explicit expression and
have to be calculated by a numerical optimization algorithm. In this thesis we use MATLAB’s
copulafit routine to estimate ν and R. Basically the routine employs numerical function
minimization to find a minimum of the negative log-likelihood function corresponding to Eq.
(2.72) w.r.t. ν. During minimization, R is iteratively estimated using an algorithm proposed in
a working paper by Bouyé et al. [11]. To visualize the shape of the p.d.f. and c.d.f of a Gaussian
and Student t copula, Fig. 2.20 shows the corresponding plots for a correlation coefficient of
ρ = 0.5.
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Figure 2.20: Visualization of the p.d.f. and c.d.f. of a Gaussian and Student t copula with correlation
coefficient ρ = 0.5.

2.3.4 Quantifying the Goodness-of-Fit

In order to allow a quantitative statement about the GoF of the Rayleigh, Weibull or Gamma
model for the DTCWT transform coefficient magnitudes, we conduct a series of Chi-Square
GoF tests on subband coefficients from DTCWT decomposed Vistex [31], Outex, and Stex im-
ages. We decompose each RGB color channel separately and conduct a Chi-Square test for each
subband on each decomposition level of a three-scale DTCWT at 5% significance. The percent-
age of rejected null-hypotheses per decomposition level (averaged over all subbands) is listed
in Table 2.5. Apparently, the rates for all decomposition levels are consistent over all three
databases. However, the reported rejection rates are different to the results presented in [101] or
[104] where we reported quite high rejection rates for decomposition levels one and two. This
effect can be attributed to our change in the GoF testing strategy, where we try to achieve the
same test power by means of sampling 500 coefficients from each subband. In [101] or [104],
we did not perform this correction and consequently the rejection rates were higher at lower
decomposition levels. Further, the listed rejection rates are in accordance with our visual im-
pression that the Gamma and Weibull distribution represent reasonable statistical models for
the coefficient magnitudes. The rejection rates for both distributions range from ten to twenty
percent across all scales with some exceptions in case of the Outex database where the rejection
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Database Level
Model

Weibull Gamma Rayleigh

Vistex
1 11.68 8.87 66.02
2 14.37 13.48 66.34
3 14.81 14.91 58.07

Stex
1 19.90 12.93 70.75
2 19.63 15.79 62.63
3 18.70 17.68 58.57

Outex
1 4.66 2.48 33.31
2 12.86 8.68 42.08
3 14.34 11.51 50.61

Table 2.5: Percentage of rejected null-hypotheses for each decomposition level of the DTCWT, averaged
over all subbands using equal sample sizes (i.e 500 samples). The lowest rejection rates per level are
marked bold.

rates are even lower. However, it is obvious that the Rayleigh distribution is a too rigid model
for the coefficient magnitudes.

As a final point, we discuss the issue of copula model selection and GoF testing which we
consider two particular weaknesses of the copula approach. Generally speaking, there exists
no commonly-accepted or recommended method to accomplish these tasks. Nevertheless, sev-
eral approaches have been proposed recently in literature (see Genest et al. [54] or Berg [9]
and references therein). The variety of ideas ranges from the reduction of the multivariate GoF
problem to an univariate one (mainly using the probability integral transform), to parametric
bootstrap procedures [140] or even the exploitation of positive definite bilinear forms [146]. In
[103], we choose a very pragmatic and straightforward approach, originally suggested by Gen-
est and Favre [52] as a first step towards model selection. We plot the pairs of original DTCWT
transform coefficient magnitudes against random samples from the fitted copula model. An ex-
ample of such a plot is shown in Fig. 2.21, where we have fitted a Gaussian copula with Weibull
margins to the same subband combinations we used in Fig. 2.19. The red points represent the
scatter plot of the original subband coefficientmagnitudes while the light-gray crosses represent
the scatter plot of 500 points sampled from the statistical model. In fact, the light-gray crosses
are obtained by sampling from the Gaussian copula and using the Weibull quantile functions
to transform the margins.

However, the large number of possible subband combinations limits the applicability of this
approach to a preliminary visual inspections of model fit. To overcome this shortcoming, we
further experimented with the Akaike [2] and Schwarz Information Criterion [161] which both
take into account the log-likelihood of the data under the given model and penalize additional
parameters to avoid overfitting issues. Nevertheless, AIC and BIC are not an adequate tool to
address the problem of model selection in a hypothesis testing sense. They are rather useful as
a means for selecting among possible candidate models without caring whether the models can
actually describe the underlying data. To re-evaluate our selection of the Student t copula in
[103], we implement a GoF test recently proposed by Genest et al. [53, 54]. The test is based on
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Figure 2.21: Scatter plots of original DTCWT transform coefficient magnitudes (red points) against 500
samples drawn from a fitted Gaussian copulas with Weibull margins.

the computation of the Cramer-von-Misés statistic
∫

[0,1]n
Cn(u)2dCn(u), with Cn =

√
n(Cn − Cθn

), (2.73)

where Cn denotes the empirical copula [137] and Cθn
denotes the estimated parametric copula

under the null-hypothesis (i.e. either Gaussian or Student t). Regarding the actual implemen-
tation of the GoF test, we adhere to the parametric bootstrap algorithm [42] given in Appendix
A of [54]. We choose 1000 bootstrap samples for our test. The null-hypothesis is rejected when-
ever the estimated p-value is lower than the significance level of α = 0.05. Due to the fact that
the parametric bootstrap procedure includes the computation of Cθn

in Eq. (2.73), we run into
considerable computational problems since the test requires to compute multivariate Gaussian
or multivariate Student t probabilities. This in turn requires computationally intensive multi-
dimensional numerical integration for which we use the specifically-tailored algorithms pre-
sented by Genz [55] and Genz & Bretz [56]. As a consequence of the intensive computational
demands, we limit our GoF study to the 200 example textures of the Vistex (full) database to
get an impression of model fit. We select the subbands of DTCWT decomposition level three.
Since we have three color channels and six subbands per scale, the joint statistical model is 18-
dimensional. The rejection rates are listed in Table 2.6. The numbers are almost equal for both
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Copula
Student t Gaussian

38.50 35.50

Table 2.6: Rejection rates of the GoF test proposed by Genest et al. [53, 54] for 18-dimensional coefficient
magnitude vectors (DTCWT level three) of 200 texture images.

copulas. In Chapter 3, we will however see that the Gaussian copula is far more attractive from
a computational point of view.



Chapter 3

Texture Image Retrieval

This part of the thesis is devoted to the first application scenario of the statistical models pre-
sented in Chapter 2. We deal with the problem of Content-Based Image Retrieval (CBIR) and
particularly focus on texture images. Throughout the last years, we observed the trend that the
amount of digital data stored in multimedia databases, such as image repositories, is constantly
growing. In order to handle this huge amount of data, we are confronted with the need for
systems which allow classification of content as well as sorting and searching. These three ex-
emplary requirements share a common ground: in order to obtain reasonable results, we need
to know how to represent or describe the content. In the context of searching in visual data, the
ambitious goal of allowing semantic queries is still an issue of open research. Systems which
solely perform image searches or queries by relying on textual annotations, are usually not
capable of representing the visual content that is perceived by human beings. A popular, alter-
native CBIR strategy is to perform image queries by providing examples of the visual content
we search for. This is a less ambitious, however, not necessarily less complex problem, since it
requires to define a suitable similarity measure between images. In practice, a CBIR system will
usually not return just one image but a set of potential results. This gives the user the freedom
to decide which images to keep. The fields of application of a CBIR system range from search-
ing in databases of natural images, e.g. holiday photos, to searching for images in repositories
of medical content. In Chapter 4, we will discuss how the idea of CBIR can be exploited to pre-
dict the histological diagnosis of endoscopy images for example. In a more formal description,
the objective of a CBIR system is to find the K ≪ L most similar images to a given query in an
image repository of L potential candidates. A schematic illustration of the CBIR building blocks
is shown in Fig. 3.1.

The chapter is basically divided into twomajor parts: in the first part, we introduce the prob-
lem of CBIR as a problem of statistical inference. In this context, a probabilistic formulation of
CBIR will serve as a basis for our work. In Section 3.2, we then review related research work
in the field of (texture) image retrieval and especially focus on approaches which closely ad-
here to the probabilistic formulation of image retrieval. The second major part of the chapter is
then devoted to our contribution. First, we motivate the need for a lightweight texture retrieval
system by discussing two retrieval scenarios with different computational requirements. We
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Figure 3.1: Schematic illustration of a CBIR system with the critical parts marked bold.

then introduce a novel, lightweight retrieval approach for which we provide a thorough com-
putational analysis of the main building blocks and a comparative study to popular approaches
from literature. In the second part of the contribution, we develop a retrieval approach based
on the theory of copula modeling. To evaluate the retrieval performance, we conclude with a
large-scale comparative study on four texture image databases. As a guideline for the reader,
we highlight that major parts of the following content recently appeared in:

[101] R. Kwitt and A. Uhl. Image similarity measurement by Kullback-Leibler divergences be-
tween complex wavelet subband statistics for texture retrieval. In Proceedings of the IEEE

International Conference on Image Processing (ICIP’08), pages 933–936, San Diego, California,
United States, October 2008

[103] R. Kwitt and A. Uhl. A joint model of complex wavelet coefficients for texture retrieval. In
Proceedings of the IEEE International Conference on Image Processing (ICIP ’09), pages 1877–
1880, Cairo, Egypt, November 2009

[104] R. Kwitt and A. Uhl. Lightweight probabilistic image retrieval. IEEE Transactions on Image
Processing, 19(1):241–253, January 2010

3.1 Image Retrieval as Statistical Inference

To the best of our knowledge, Vasconcelos & Lippman [185, 186] first introduced a Bayesian for-
mulation of CBIR, also referred to as Minimum Probability of Error retrieval. An image I consists
of a number of pixel observations (x1, . . . , xN) = x ∈ X residing in the space of observations
X. We assume that each image of the database belongs to one of M image classes. Hence,
the starting point of the probabilistic retrieval formulation resembles a standard classification
scenario. Next, let Y denote a random variable with realizations in {1, . . . ,M} and let pY de-
note the probability mass function (p.m.f.) of Y. As a first building block of the CBIR system,
Vasconcelos & Lippman identify a feature transformation stage which is a mapping T : X → Z

from the space of observations to the so called feature space Z. The key issue here is, to repre-
sent the image content in a domain which is more suitable for further processing. Accordingly,
z = T(x) denotes a so called feature vector. The second building block of the CBIR system is a
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probabilistic model describing how the feature vectors populate the feature space with respect
to their class membership. The corresponding class-conditional p.d.f. pZ|Y(z|y) constitutes the
feature representation. The final part of the CBIR system deals with the task of assigning a novel
image to one of theM image classes which leads to the question of how to define the so called
retrieval function g : Z → {1, . . . ,M}. In the formulation of [186], the authors argue that the
ulterior objective for designing this function is to minimize the probability of retrieval error
or in classification terminology the probability of classification error. Given that the function
ω : Z → {1, . . . ,M} returns the true class membership of a feature vector z, the objective is
to minimize P(g(z) 6= y|ω(z) = y), i.e. the probability of assigning z to a class other than
its true class y. From statistical classification theory (e.g. see [51]) we know that the function
minimizing this criteria is the Bayes classifier

g(z) = argmax
y
pY|Z(y|z). (3.1)

Applying the Bayes rule and noting that the maximization is independent of pZ, we obtain the
equivalent formulation

g(z) = argmax
y
pZ|Y(z|y)pY(y) (3.2)

which is substantially easier to handle than Eq. (3.1). We only have to estimate the class-
conditional likelihood pZ|Y instead of the posterior probability pY|Z. One important element in
the formulation of [186] is, that we can get rid of the p.m.f. pY in Eq. (3.2) by assuming that each
image belongs to its own class with equal prior probability, i.e. ∀y ∈ {1, . . . ,M} : pY(y) = 1/M.
In CBIR, this is a reasonable simplification since it is hard to establish a-priori probabilities of
database images. As a consequence, Eq. (3.2) reduces to the Maximum Likelihood (ML) selec-
tion criterion.

In any practical scenario, we will have to estimate pZ|Y from a collection of feature vectors
z1, . . . , zR and the actual retrieval process will be based on a collection of query feature vectors
z∗
1 , . . . , z

∗
K extracted from the query image I∗. As we will later see, it is computationally bene-

ficial to choose K smaller than R. Assuming that the feature vectors are i.i.d. and conditionally
independent given the true class membership, facilitates estimation of pZ|Y and allows to write
the ML selection rule as

g(z∗
1 , . . . , z

∗
K) = argmax

y

K∏

k=1

pZ|Y(z∗
k|y). (3.3)

Since each image belongs to its own class, we can omit the notation Z|Y from now on and instead
indicate that a feature representation belongs to image Ij by indexing the model parameter θj.
As all feature representations we consider in this chapter belong to some parametric family, this
is notationally more convenient. To conclude the recapitulation of probabilistic CBIR, we finally
highlight the important relation betweenML image retrieval according to Eq. (3.3) and retrieval
by searching for the feature representation which minimizes the Kullback-Leibler (KL) diver-
gence [26] to the feature representation of the query image. Given that pZ(z;θ1), . . . ,pZ(z;θL)

denote the representations of the candidate images and pZ(z;θ∗) denotes the representation of
the query image, it can be shown that ML selection is asymptotically (i.e. K→ ∞) equivalent to

g(z) = argmin
y
D(pZ(z;θy)||pZ(z;θ∗)) (3.4)

where

D(pZ(z;θy)||pZ(z;θ∗)) :=

∫

Ω

pZ(z;θy) log
pZ(z;θy)

pZ(z;θ∗)
dz (3.5)
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denotes the KL divergence and Ω denotes the domain of the p.d.f. pZ. This relation can easily
be verified by application of the weak law of large numbers (see [186] or [187] for a proof and
some other interesting relationships). Note, that in case we rely on Eq. (3.4) as the retrieval
function, we have to estimate pZ(z;θ∗) from z∗

1 , . . . , z
∗
R first. In situations where there exists

a closed-form expression for the KL divergence between two feature representations, the addi-
tional estimation step pays off, since we can compute the measure of similarity by solely relying
on the model parameters θ1, . . . ,θL and θ∗. In comparison, Eq. (3.3) requires to evaluate the
p.d.f. pZ for each query feature vector z∗

i . Apparently, this implies a trade-off in choosing the
number of query feature vectors K, since K ≈ R presumably reduces retrieval errors, but on
the other hand increases computational demand as well. Nevertheless, using either ML selec-
tion or the KL divergence minimization strategy only requires model parameters to be stored.
Hence, both strategies are quite efficient from a storage point of view. In the following section,
we review research works which all more or less exploit the probabilistic CBIR formulation of
Vasconcelos & Lippman.

3.2 Related Work

In the original work [186], Vasconcelos & Lippman present a first application of the probabilistic
CBIR formulation based on the 2-DDiscrete Cosine Transform (DCT) for feature transformation
and multivariate Gaussian Mixture Modes (GMM) for feature representation. The authors em-
ploy a sliding-window approach to compute the 2-D DCT on each 8 × 8 pixel window and
extract the first D coefficients (including the DC coefficient) in MPEG zig-zag scan order to ob-
tain D-dimensional feature vectors. A eight-component GMM is then fit to the feature vectors
using the classic Expectation-Maximization (EM) algorithm [36], initialized by an adaption of
Gray’s codeword-splitting procedure (see [59] for the original algorithm and [186] for a descrip-
tion of the modification). Retrieval is accomplished by extracting query feature vectors in the
same way, however, using a non-overlapping 8× 8 block 2-D DCT. Hence, the amount of query
feature vectors is significantly smaller than the number of feature vectors used for GMMestima-
tion and the computational demand for similarity measurement is reduced. In another work by
Vasconcelos [183], the author proposes an approximation of the KL divergence betweenmixture
models for retrieval, denoted as the Asymptotic Likelihood Approximation.

In [40], Do & Vetterli present an CBIR approach which is based on the same idea of mini-
mizing the retrieval error, however the configuration of the feature transformation and feature
representation step is different. The authors base their approach on the DWT for feature trans-
formation and follow the assumptions of Section 2.2 to construct an efficient feature represen-
tation based on the GGD. Although the independency assumptions potentially affect retrieval
accuracy in a negative way [184], they allow computationally efficient retrieval as the authors
show by deriving a closed-form expression for the KL divergence between two GGDs. Con-
sequently, the retrieval task solely depends on the estimated GGD parameters. In [39], Do &
Vetterli present an extension of this approach to achieve rotational invariance by relying on the
Steerable Pyramid [168] for feature transformation and two particular forms of HiddenMarkov
Trees (HMT) for feature representation. Retrieval is accomplished by an approximation of the
KL divergence between HMTs [38].

In [180], Tzagkarakis et. al. propose a similar idea but use the DWT for feature transforma-
tion and the family of Symmetric α-Stable distributions (SαS) for feature representation, again
adhering to the assumptions of Section 2.2. Since there exists no closed-form solution for the KL
divergence between two SαS distributions in general form, the authors suggest to use the char-
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acteristic functions instead of the p.d.f.s to compute the KL divergence. In [179], this approach
is carried forward by the same authors to achieve rotational invariance by means of a Steerable
Pyramid together with α-stable modeling of the subband coefficients and a "Gaussianization"
procedure to obtain multivariate Gaussian distributed coefficients. In further consequence, this
allows application of the KL divergence betweenmultivariate Gaussian distributions (for which
a closed-form expression exists).

Another interesting approach is presented by de Ves et. al [34], where the wavelet coeffi-
cients of the vertical and horizontal DWT detail subbands are considered as realizations of a
bivariate random vector and the magnitude is modeled by a two-parameter Gamma distribu-
tion. The authors report good retrieval results using the Stationary Wavelet Transform (SWT,
implemented by the à-trous algorithm) as a substitution for the DWT to get rid of the shift-
dependency problem. Similar to previous works, the KL divergence minimization strategy is
employed for image retrieval.

3.3 Lightweight Probabilistic Texture Retrieval

In this section, we introduce a novel texture image retrieval approach which is based on the
probabilistic CBIR formulation of Section 3.1 and can be considered as a direct extension of
the work of Do & Vetterli [40]. The ingredients of this approach are the DTCWT for feature
transformation and the Weibull or Gamma distribution for feature representation. Image re-
trieval is based on the KL divergence minimization strategy for which we present closed-form
expressions. Besides the development of a novel variant of probabilistic CBIR, a main con-
cern of this section is computational complexity. Since most publications on CBIR solely aim at
an improvement in retrieval accuracy and often neglect computational issues, solutions which
are computationally inexpensive and minimize the retrieval error are rare. In the probabilistic
framework where each image is represented by some statistical model and image similarity is
measured by a function of these models, we have to deal with the trade-off between model
complexity and computational performance. Increasing the model complexity to better capture
image characteristics might lead to higher retrieval rates on the one hand, but it is very likely
that the computational demand for feature transformation, representation or similarity mea-
surement increases in a similar manner. In particular, we consider two scenarios which impose
computational constraints on different building blocks of the CBIR framework. The scenarios
differ in that possible performance bottlenecks arise at different locations. Both scenarios are
sketched next:

Retrieval Scenario A This scenario is the classic retrieval scenario, where the model parameters
of all images in the repository are calculated off-line and new images are added to the
database at a slow rate. Hence, overall runtime performance is predominantly limited
by similarity measurement which inherently depends on the size of the image repository
L. The runtime impact of model parameter estimation and feature transformation is of
secondary importance since both steps have to be performed only once (i.e. for each new
query).

Retrieval Scenario B The second retrieval scenario we are concerned about has several facets
and imposes additional requirements on the building blocks of the retrieval framework.
First, we observe situations where new images arrive at a high rate and have to be stored
in the database. At the same time, image queries are executed. The computational de-
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mand for similarity measurement is still the primary concern here, however the complex-
ity of parameter estimation becomes an important issue. If the images are represented in
a domain other than spatial, the feature transformation step possibly contributes a signif-
icant amount of additional runtime as well. Other challenging variants of this scenario
occur when online texture similarity measurement is required, e.g. when the frames of
an image stream have to be matched to a limited set of query templates. Real-world ex-
amples for that include video-controlled quality assurance in texture manufacturing, or
the detection of cancerous tissue during video-colonoscopy. Computationally expensive
parameter estimation or feature transformation can scale up to the limiting factors for pro-
duction throughput or slow down the diagnostic process. In order to cover both retrieval
scenarios, we need a low-complexity features transformation, a similarity measure which
exclusively depends on the image model parameters and an efficient model parameter
estimation procedure in the feature representation step.

In order to meet the requirements set by the two retrieval scenarios, we choose to adopt all
three assumptions of Section 2.2. First, we establish the formal connection to the probabilistic
CBIR formulation. Let X denote the space of pixel observations and let T denote the feature
transformation, i.e. the DTCWT. Given a J-scale DTCWT, we obtain B := 6J detail subbands in
case of single-channel (e.g. luminance) images. For the feature representation, we only consider
the magnitudes of the complex-valued transform coefficients. A feature vector z = (z1, . . . , zB)

consists of one coefficient magnitude per subband. Due to the independency assumption, we
can write the joint p.d.f. pZ of the random vector Z as

pZ(z;Θ) =

B∏

b=1

pZb
(zb;θb) (3.6)

with Θ = [θ1, . . . ,θB]. In case we take a Weibull or Gamma distribution as a basis, θb =

[αb βb]. In order to estimate pZ we have to estimate the parameter vectors θb from a collection
of feature vectors. The assumption of i.i.d. transform coefficients allows to estimate θb from
all coefficients of subband b. In contrast to [186], we do not follow a sliding window approach
to extract feature vectors. Nevertheless, due to subsampling by two after each decomposition
level of the DTCWT, the subbands of two successive levels differ in size by a factor of 1/4. As a
consequence, we do not obtain vectors of equal lengths. Technically, this means that estimation
of θb is accomplished based on the Nb coefficient magnitudes zb1, . . . , zbNb

of subband b. For
the actual retrieval process, we have B query feature vectors z∗

i , . . . , z
∗
B where z∗

b consists of Vb

coefficients from a subband b. We intentionally use Vb to signify that the number of transform
coefficients in subband b does not necessarily have to be equal toNb for the computation of the
ML selection rule, i.e.

g(z∗
1 , . . . , z

∗
B) = arg max

k∈{1,...,L}

B∑

b=1

Vb∑

j=1

logpZb
(zbj;θk). (3.7)

Although, we compute the DTCWT on the whole image and obtain all coefficients anyway,
limiting the amount of coefficients to Vb might be of practical interest for very large images
due do the reduced computational effort to evaluate the likelihood. Another consequence of
assuming independency between Z1, . . . ,ZB is, that we can employ the chain-rule of entropy
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[26] and obtain

g(z) = arg min
k∈{1,...,L}

B∑

b=1

D(pZb
(z;θk)||pZb

(z;θ∗)) (3.8)

as an alternative, KL divergence based, retrieval strategy. For the Gamma and Weibull distri-
bution the KL divergence in Eq. (3.8) has a closed-form expression [104]. Given that pi :=

p(z;αi,βi) and pj := p(z;αj,βj) denote the p.d.f.s of two Weibull distributions, we obtain

D(pi||pj) = Γ

(

αj

αi

+ 1
)(

βi

βj

)αj

+ log
(

β−αi

i αi

)

−

log
(

β
−αj

j αj

)

+ log (βi)αi − log (βi)αj +
γαj

αi

− γ− 1.
(3.9)

and in case pi,pj denote the p.d.f.s of two Gamma distributions we obtain

D(pi||pj) = ψ(αi)(αi − αj) − αi+

log
(

Γ(αj)

Γ(αi)

)

+ αj log
(

βj

βi

)

+
αiβi

βj

(3.10)

Here, γ = 0.577216 denotes the Euler-Mascheroni constant [1]. Our formal description of the
feature representation and similarity measurement step can be directly adapted to describe the
approach by Do & Vetterli [40] in the framework of [187]. We only have to replace the DTCWT
by the DWT and the Gamma or Weibull distribution by the GGD. The corresponding closed-
form expression for the KL divergence is given in [40]. With respect to the approach of Do &
Vetterli, we remark that the independency assumptions are a crude simplification in our setup,
since coefficients of a redundant transform, such as the DTCWT, will inevitably exhibit depen-
dencies (e.g., see Section 2.3.3). However, we will see that this simplification pays off in the
sense that we obtain a simple and computationally efficient CBIR approach with good retrieval
rates (see Section 3.3.2). Finally, we point out that although many research papers on CBIR do
not adhere to the terminology of feature transformation, representation and similarity measure-
ment to express the computational steps, the basic ideas are usually similar. The framework of
probabilistic CBIR is flexible enough to capture a considerable subset of these approaches in a
formally unified way.

3.3.1 Computational Analysis

In this section, we present an in-depth computational analysis for the main building blocks of
our CBIR system (see Fig. 3.1) in terms of required arithmetic operations. This is a crucial
step, since it allows to quantify the term lightweight and assess the practical usefulness of the
approach in the context of the two retrieval scenarios we discussed in Section 3.3. In particular,
we take a closer look at the feature transformation step, the feature representation step (which
basically involves parameter estimation) and the similarity measurement or retrieval step. As
a reference, we include a discussion of the computational steps of [40] since this is the closest
relative to our approach. By the term arithmetic operations, we understand the number of addi-
tions & subtractions and multiplications & divisions (i.e. basic arithmetic operations) as well
as the computationally expensive log, ex and xr operations with x, r ∈ R. We further take into
account any non-trivial operation, such as the evaluation of the Gamma Γ or the Digamma ψ
function. To avoid numerical difficulties, we compute log Γ instead of Γ at the cost of perhaps
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one additional exponentiation. The function values of log Γ and ψ are obtained by employ-
ing a lookup-table approach with linear interpolation. Both, lookup and interpolation, can be
performed with constant complexity and only require basic arithmetic (e.g. 5 additions & sub-
tractions, 4 multiplications & divisions and 2 table-lookups in our implementation). Since we
will also provide relative runtime measurements, all estimation methods as well as the similar-
ity measurement routines are implemented in MATLAB to obtain comparable results. Runtime
is measured on a Intel Core2 Duo 2.66Ghz system with 2GB of memory running MATLAB 7.6.
We particularly emphasize that the focus is on relative runtime differences and not on absolute
values.

Feature Transformation

Besides its advantages for image analysis (see Section 2.3), the DTCWT is appealing from a com-
putational point of view since it can be implemented very efficiently by four parallel pyramidal
DWTs using appropriate filter sets. Regarding memory requirements, the DTCWT is an over-
complete transform with a redundancy factor of four in case of images. In contrast to that, the
DCT (e.g. used in [186]) is non-redundant, the Steerable Pyramid [168] (e.g. used in [39, 179])
is overcomplete by a factor of 4k/3 (k denotes the number of orientation subbands) and the
Stationary Wavelet Transform (SWT) [136] (e.g. used in [34]) is overcomplete by a factor of
3J, where J denotes the maximum decomposition depth. The computational complexity of the
DTCWT is linear O(N) in the number of input pixels N, since it basically requires computation
of four parallel DWT decompositions which are of linear complexity. Hence, both DWT and
DTCWT differ only by a constant factor. For comparison, the DCT, SWT, Steerable Pyramid and
Gabor wavelets (when implemented in the frequency domain) have complexity O(N logN).
However, to be fair we have to note that in case of a block-based DCT with 8 × 8 blocks for
example, the logN term carries no weight compared to a full-frame DCT.

Feature Representation/Parameter Estimation

Maximum-Likelihood parameter estimation for the Gamma and Weibull distribution requires
a numerical root-finding algorithm to obtain estimates. Since we can determine the derivatives
of the log-likelihood functions w.r.t. the relevant parameters in both cases, it is reasonable to
use the Newton-Raphson algorithm due to its good convergence properties. However, opti-
mal (i.e. quadratic) convergence is only possible if the starting value is close to the actual root.
We attempt to fulfill this requirement by using moment estimates for the Gamma and Weibull
model. Employing the Gumbel moment matching method with the corresponding parameter
transformation in case of the Weibull distribution at least eliminates the issue of computation-
ally intensive starting value calculation. We will refer to this approach as the Weibull/Gumbel
approach and denote the direct ML estimation strategy as Weibull (direct). In the latter case, we
employ a α-vs-a3 lookup-table to obtain the starting value α̂1. The exact computational require-
ments for moment matching will be discussed later. To get an impression of the computational
demand in each iteration step of the Newton-Raphson algorithm, we determine the number of
required arithmetic operations. For comparative reasons, we also provide the number of oper-
ations in case of the GGD ML estimation approach of [40] and the GGD estimation approach
proposed by Song [171]. The starting value ĉ1 for [40] is obtained by the method of Krupinski
[91] and the starting value for the Newton-Raphson iteration of Song [171] is fixed to ĉ1 = 3.
We optimize computation in such a way, that terms (e.g. summations, logarithms, etc.) which
occur repeatedly in an iteration step are only calculated once. Since many operations depend on
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the signal length N, we omit any additional constants for the sake of readability in these cases.
The number of arithmetic operations per iteration and the runtime performance of the ML esti-
mation procedures relative to the longest runtime (marked bold) are listed in Table 3.1. Further,
Fig. 3.2 shows a boxplot of the mean estimation times over a set of reasonable parameter values
for all ML estimation approaches. For each parameter value, ML estimation is repeated 100
times on 105 random numbers drawn from the corresponding model.

Model ± ×,÷ | · | ex, xr

ψ,ψ ′ Relative
log Runtime

GGD, MLE [40] 3N 2N N 2N 2 0.76
GGD, Song [171] 4N 3N N 2N 1.00
Weibull/Gumbel 4N 3N N 0.21
Weibull (direct) 4N 2N 2N 0.62
Gamma 2N 4 N 2 0.21

Table 3.1: Number of arithmetic operations for one Newton-Raphson update step as a function of the
signal lengthN.
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Figure 3.2: Boxplot of the mean ML estimation times over a set of parameter values. The y-axis shows
the estimation time in seconds and the number in the annotation denotes the average iterations to reach
convergence of the Newton-Rapshon algorithm.

As we can see, ML estimation using the Weibull/Gumbel approach shows the best perfor-
mance, with only one iteration on average to reach convergence. The convergence criterion is
met in case the absolute difference of two successive estimates is less than 10−6. In contrast,
direct estimation of the Weibull parameters is less competitive, although we already use the
α-vs-a3 lookup-table implementation. The higher number of iterations deteriorates the total
runtime. The Gamma MLE procedure performs as good as the Weibull/Gumbel approach.
Nevertheless, the number of iterations is the limiting factor again, since one Newton-Raphson
update step in fact requires fewer arithmetic operations compared to the Weibull/Gumbel ap-
proach. As expected, the complex update step of the GGDML estimation approach of [40] with
more log, xr, ex operations leads to an increase in computation time compared to the Weibul-
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l/Gumbel or Gamma case. Regarding the number of iterations, we confirm the results of [40]
with three to four iterations on average to reach convergence. The estimation approach pro-
posed by Song [171] exhibits the worst runtime performance of the experiment and a quite
strong dispersion as well. A closer look at the number of iterations for each choice of the shape
parameter c reveals an average of 10 iterations for c < 1.0 which distorts the average. This
seems reasonable, since the starting value of ĉ1 = 3 is actually far-off the true value in these
situations.

Next, we assess the number of arithmetic operations to compute moment estimates in case
of the GGD, Gamma, Weibull/Gumbel and Weibull (direct) approach. As mentioned before,
we use Krupinski’s [91] fast approximation to obtain moment estimates for the GGD, an α-vs-
a3 lookup-table approach forWeibull (direct)moment estimates, Eq. (2.47) forWeibull/Gumbel
moment estimates and Eq. (2.56) for Gamma moment estimates. A careful analysis of moment
estimation is reasonable, since we use these estimates as a fast alternative to the MLEs in our
retrieval experiments. The corresponding numbers of arithmetic operations are listed in Table
3.2. We emphasize, that this is the total effort to compute the parameter estimates. No iterative

Model ± ×,÷ | · | ex, xr

log Γ
Relative

log Runtime

GGD [91] 2N N N 3 2 0.07
Weibull (direct) 4N 2N 0.24
Weibull/Gumbel, Eq. (2.47) 3N N N 1.00
Gamma, Eq. (2.56) 3N N 0.17

Table 3.2: Number of arithmetic operations to obtain moment estimates for the model parameters as a
function of the signal lengthN.

procedures are necessary and mostly basic arithmetic operations are performed. Only in case
of Weibull/Gumbel moment estimation, the log operation is dependent on the signal length
N. This is reflected in the relative runtime differences because log is an expensive operation
compared to addition/subtraction or multiplication/division. The fast approximative GGD
parameter estimation of [91] shows the best performance because the expensive computations
like log Γ , ex or log do not depend on the signal length N. Further, this approach apparently
benefits from our lookup-table implementation of log Γ . Regarding moment estimation of the
Gamma parameters, we emphasize that this approach basically requires to compute the sample
mean and sample standard deviation and hence performs at a competitive level compared to
[91] as well.

Similarity Measurement/Retrieval

In the classic retrieval scenario, the similarity measurement part is most critical for runtime per-
formance since each new query image requires computation of the similarity measure for all
candidate images in the database. In case the statistical model parameters of the feature repre-
sentations are estimated at the time of storage, the runtime performance of the whole retrieval
operation is completely determined by the performance of the similarity measurement process.
Although all presented KL divergences can be computed with constant complexity, it is worth
taking a closer look at the required arithmetic operations. Given, that the statistical model pa-
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Model ± ×, ex, xr

log Γ ψ
Relative

÷ log Runtime

GGD [40] 6 10 3 4 0 1.00
Gamma, Eq. (3.10) 6 5 1 2 1 0.56
Weibull, Eq. (3.9) 8 9 8 1 0 0.31

Table 3.3: Number of arithmetic operations for KL divergence based similarity measurement.

rameters of an arbitrary wavelet subband are available for the query and all L database images,
we simulate a database search for L = 104. Table 3.3 lists the number of arithmetic operations
for each KL divergence as well as the runtime relative to the longest runtime (marked bold). As
we can see, the KL divergence for the GGD has the worst performance, due to the computations
of log Γ . The KL divergence of the Gamma model shows slightly worse runtime performance
than the KL divergence for the Weibull model which can be attributed to computation of ψ
and the additional log Γ . As a concluding remark, we note that since all KL divergences have a
closed-form expression, no histogram computation and discrete version of the KL divergence is
required. In practice, this is a huge advantage since we only have to store the model parameters
and further avoid the search for a reasonable histogram binning.

3.3.2 Experiments

In this experimental section, we intent to cover three important issues: first, we address the im-
pact of either using moment or ML estimates on the retrieval performance of the DTCWT based
approaches. We additionally discuss this issue in the context of the approach of Do & Vetterli
[40]. Second, we conduct a comparative study to three approaches from literature including the
Gabor wavelet approach of Manjunath &Ma [117], the Local Binary Patterns proposed by Ojala
et al. [141] and the popular MRSAR model of Mao & Jain [119]. In the following, we provide
a brief description of these approaches as well as the exact parameter configuration we use for
our experiments. Regarding the parameter configuration of our own retrieval approach, we
use a three-scale DTCWT with Kingsbury’s Q-Shift (14, 14)-tap filters for decomposition levels
greater than two in combination with (13, 19)-tap near-orthogonal filters for the first decompo-
sition level [87].

Do & Vetterli, 2002 Basically, the idea of this approach is already explained in Section 3.3. Re-
garding the parameter configuration, we choose a three-scale DWT with the popular CDF
9/7 [32] filter. Parameter estimation is either accomplished by the fast moment matching
method proposed by Krupinski [91] or the ML approach of Do & Vetterli [40]. In the la-
beling of our figures the approach is denoted by DWT, GGD (Mom.) orDWT, GGD (MLE),
resp., depending on the type of estimation method.

Manjunath & Ma, 1996 The Gabor wavelets approach of Manjunath & Ma [117] is one of the
pioneering approaches in the field of texture image retrieval. A Gabor wavelet decom-
position is used to obtain a multi-resolution representation of an image at different scales
and orientations. The important parameters of the Gabor wavelets are the upper Uu and
lower Ul filter frequency which, in combination with the number of scales J and orienta-
tions O, determine the exact filter configuration. The feature vector of an image consists



Chapter 3. Texture Image Retrieval 58

of the mean and standard deviation of the transform coefficient magnitudes of each sub-
band. Hence, a feature vector contains J × O × 2 elements. Image similarity is measured
by the city-block distance between two feature vectors normalized by the standard devi-
ations of the features. In our experiments, we use a configuration of Ul = 0.04, Uu = 0.5,
J = 3 and O = 6.

Ojala et al., 1996 In [141], Ojala et al. first introduce the concept of Local Binary Patterns (LBP)
to capture texture information. The basic idea is to consider the pixel neighborhood of
every pixel in an intensity image and extract a binary pattern from that. In a classic eight
pixel neighborhood, we start from the top left-hand pixel (clockwise) and assign a ’1’ in
case the intensity value is larger than the intensity value of the center pixel, or ’0’ oth-
erwise. The resulting eight bits are then interpreted as a natural number in the range of
[0, 255] and a histogram over all LBPs is constructed. In our experiments, we use the stan-
dard eight pixel neighborhood and only consider those pixel as valid center pixel where
all neighbors are inside the image boundary. No border extension is performed. Of course,
other neighborhood definitions are possible as well and several extensions to the classic
LBP approach have been proposed, e.g. see [112]. As a suitable distance measure between
the LBP histograms of two images, the authors propose to use the histogram intersection
metric.

Mao & Jain, 1992 In [119], Mao & Jain introduce theMultiresolution Simultaneous Autoregres-
sive (MRSAR)model to capture local pixel dependencies in an intensity image by a variant
of Markov Random Fields. The basic idea is to estimate the intensity of a pixel from the
local 8 pixel neighborhood by means of a Simultaneous Auto-Regressive (SAR) process.
Four SAR parameters and the variance of the estimation error are estimated over aN×N
pixel window, sliding by increments of s pixel in the horizontal and vertical direction.
Multiresolution is accomplished by increasing the neighborhood size (i.e. “pseudo” mul-
tiresolution) and repeating the estimation process. In our implementation we adhere to
the neighborhood definition of [119]. Hence, given three resolution levels we finally ob-
tain a 15-dimensional parameter vector per sliding window position. In the original work,
the authors propose to determine the mean and covariance of the parameter vectors for
feature representation and hence implicitly assume multivariate normality of the parame-
ter vectors. TheMahalanobis distance is then suggested tomeasure the similarity between
the feature representations of two images. We deviate from this setup and compute the
Bhattacharya distance instead. In [191], Xu et al. have demonstrated superior retrieval
performance using this metric. Regarding the parameter configuration, we use the reso-
lution levels 1, 2 and 3, a sliding window of 21× 21 pixel with s = 4 pixel increments and
the method of least-squares to estimate the SAR parameters.

As a third and final issue of our experimental study, we take up the results of the computa-
tional analysis section and intend to give a guideline for lightweight retrieval. As an extension
to the work of [104], we considerably enlarge our study to include experimental results for the
Outex, Stex and Vistex (full) database (see Chapter 1). All images are first converted to the LUV
colorspace and only the luminance (L) channel information is retained. The original 512× 512
pixel versions of the textures are split into B = 16 non-overlapping subimages (128× 128 pixel)
and each subimage is used as a query image once. The evaluation process of the retrieval system
is discussed next.
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split
Query

20 retrieved database images
(sorted by similarity - left to right)

Figure 3.3: Procedure of splitting the 512 × 512 pixel images into 16 subimages of size 128 × 128; on the
right, we see a query image (red) and the top 20 retrieval results. Those images belonging to the same
parent as the query are marked light grey. In accordance to our evaluation criterion, the retrieval rate at
operating point K = 19 is 31.25%.

Evaluation Criterion

To evaluate the performance of the retrieval system we have to define a measure of retrieval
correctness. We follow the common approach of counting the number of correct images among
the top K retrieved images, see [149, 111, 40, 191]. To capture this measure in a formal way, we
let P1, . . . ,PN denote the N parent images and let I1, . . . , IL denote the images in the repository,
obtained by the splitting process, i.e. L = BN. Further, we define a parent indicator function as

p : {1, . . . , L}2 → {0, 1}, p(i, j) :=

{
1, if Ii and Ij are splits of the same parent image

0, else
(3.11)

and let Rj := {r
(j)

1 , . . . , r(j)L } denote the index set of the sorted similarity values for the query
image Ij to all L candidate images (including the query itself). The percentage of correctly
retrieved images for an arbitrary query image Ij at operating point K can then be calculated as

s
(j)

K =
1
B

K+1∑

i=1

p(j, r(j)i ) (3.12)

where the upper limit of the sum, K+1, accounts for the fact that the query image is not excluded
from the set Rj. This of course assumes that the query is naturally defined to be most similar
to itself (which is always the case in our setup). The final retrieval rate of the CBIR system at
operating point K – calculated on the basis that each database image is used as a query once –
can then be determined by

SK =
1
BL

L∑

j=1

K+1∑

i=1

p(j, r(j)i ). (3.13)

Since each image is split into 16 subimages in our setup, B = 16 for all reported results. Based on
this evaluation setup, it is possible to construct Receiver Operating Characteristic (ROC) curves
by plotting K against SK. This allows to study the retrieval behavior as we increase the number
of retrieved images. For practical purposes, reasonable values of K seem to be in the range of
16 to 40 images. To visualize the retrieval performance criterion, Fig. 3.3 illustrates the splitting
process and shows an exemplary retrieval result for K = 20. As it is pointed out by Picard et al.
[149], showing that a ROC curve of an approach lies above the ROC curve of another approach
is a reasonable way to demonstrate a performance increase.
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Figure 3.4: Retrieval rate comparison of the top 40 retrieved images for the DTCWT-based retrieval ap-
proaches and the strongly related DWT approach of Do & Vetterli [40]. The dashed lines denote the results
obtained using moment estimates, the solid lines denote the results obtained by relying on ML estimates
of the distribution parameters.

Results

As a first experiment, we assess the retrieval performance of the DTCWT approaches w.r.t. the
used estimation procedure. Fig. 3.4 shows the ROC curves for the Outex, Stex, Vistex (full)
and Vistex (small) database. ROC curves corresponding to moment estimates are marked by a
dashed line, whereas ROC curves corresponding to ML estimates are marked by a solid line.
The first observation we make is that the Gamma model apparently leads to the top retrieval
performance no matter whether we use moment matching or ML estimation. This can also be
confirmed by taking a look at the top K = 16 retrieval results listed in Table 3.4. We further
observe that moment estimation does in no case lead to notably worse retrieval performance.
In some cases, the moment matching approach leads to even better retrieval performance. This
result is consistent with the observations we made in [104]. From a computational point of view,
this is a rather appealing observation, since it allows to replace the computationally demanding
procedure of ML estimation by the considerably faster moment estimation approach without
sacrificing retrieval rate.
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Approach Outex Stex Vistex (small) Vistex (full)

DTCWT, Gamma (MLE) 39.41 51.16 80.82 51.42
DTCWT, Gamma (Mom.) 40.45 52.84 82.65 51.76

DTCWT, Weibull/Gumbel (MLE) 36.90 48.69 79.59 50.63
DTCWT, Weibull/Gumbel (Mom.) 37.69 48.91 79.25 50.27
DWT, GGD (Mom.) 36.35 46.19 78.79 48.90
DWT, GGD (MLE) 36.18 45.70 79.11 48.97

Table 3.4: Retrieval rates at the operating point of K = 16 retrieved images for the different statistical
models (and estimation strategies) on four texture databases. The top results are marked bold.

Approach Outex Stex Vistex (small) Vistex (full)

DTCWT, Gamma (Mom.) 40.45(2) 52.84(2) 82.65(3) 51.76(3)
Do & Vetterli, 2002 36.35(4) 46.19(5) 78.79(4) 48.90(4)
Manjunath & Ma, 1996 26.86(5) 46.73(4) 67.86(5) 39.57(5)
Mao & Jain, 1992 45.91(1) 61.51(1) 90.19(1) 63.77(1)
Ojala et al., 1996 38.50(3) 52.24(3) 83.67(2) 55.05(2)

Table 3.5: Retrieval rates at the operating point of K = 16 retrieved images on four databases; the rank of
each approach is listed in parentheses and the top approaches are marked bold.

As a next point, we take a closer look at the competitiveness of the DTCWT, Gamma (Mom.)
approach in comparison to the approaches of [40, 141, 117] and [119]. Fig. 3.5 shows the corre-
sponding ROC curves. As we can see, the top performance is achieved by the MRSAR approach
of Mao & Jain [119] in all cases. However, the MRSAR approach is also the most computation-
ally expensive one, both in terms of parameter estimation and similarity measurement. The
least-squares procedure to estimate the 15 MRSAR parameters is rather time consuming and
computation of the Bhattacharya divergence requires considerably more time compared to the
other similarity measures we use here. Especially for retrieval scenario B, the prerequisite to
compute the expensive model parameter estimation procedure for each query image limits the
usability of the MRSAR approach. Regarding retrieval scenario A, estimation is a less critical
issue and similarity measurement can be speed-up by using the approximation to the Bhat-
tacharya divergence proposed by Comaniciu et al. [24]. In Fig. 3.5, we further observe that
the standard LBP approach of Ojala et al. [141] is quite competitive in terms of retrieval perfor-
mance. Computation of the LPBs can be performed very efficiently in the spatial domain and
histogram intersection basically requires one pass through the one-dimensional LBP histogram.
The DTCWT, Gamma (Mom.) approach exhibits almost the same retrieval rate as the LBP ap-
proach with slightly higher rates on Stex and Outex. Finally, we highlight that we consistently
achieve better retrieval rates than the DWT, GGD (Mom.) approach and the Gabor wavelets,
no matter which database we consider. The only true competitor in terms of computational
performance and retrieval rate is the LBP approach of Ojala et al. The detailed retrieval results
at the operating point of K = 16 retrieved images are listed in Table 3.5.

Another interesting observation can be made by looking at the results of Fig. 3.5. Appar-
ently, it is inadvisable to judge the quality of a retrieval approach solely based on the results
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Figure 3.5: Retrieval rate comparison of the top 40 retrieved images.

obtained on just one image database, especially when the number of images is small. Although
the Vistex (small) database is widely-used in the literature on texture image retrieval as a pop-
ular test set, we point out that the results might convey a wrong notion of total and relative re-
trieval performance. It is even possible that the overall ranking of the approaches changes from
database to database. In Table 3.5, we highlight this fact by listing the ranks of the approaches
in subscripted parentheses. As another example, consider the difference between the retrieval
results obtained on Stex and Vistex (small). The margin between the DWT, GGD (Mom.) and
DTCWT, Gamma (Mom.) approach is rather small on Vistex (small) while we observe a consid-
erable margin of≈ 7 percentage points on Stex. We conclude, that statements about the ranking
of different retrieval approaches are only convenient in case the study is conducted on at least
two databases of reasonable size.

3.4 Copula-Based Retrieval

For the lightweight texture retrieval approach of the last section, we relied on the assumption
of transform coefficient independency across subbands of the same scale and subbands of dif-
ferent scales. Further, the approach is tailored for singe-channel (e.g. grayscale) images, since
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the statistical models cannot capture information (e.g. association structure) between different
subbands or channels. In this section, we present a novel retrieval approach which incorpo-
rates the association of DTCWT transform coefficients across subbands and color channels into
the feature representation. The approach was first introduced in [103] and relies on the copula
models of Section 2.3.3. The feature transformation is the DTCWT and we consider all available
subbands of a specific decomposition level. In case of color images, a feature vector z contains
B = 18 elements, where each element is a transform coefficient zi = |zi| from one subband, i.e.
z = (z1, . . . , zB). Hence, according to Eq. (2.63) the joint p.d.f. of Z can be written as

pZ(z;θ1, . . . ,θB,Θ) = c(F1(z1;θ1), . . . , FB(zB;θB);Θ) ·
B∏

i=1

fi(zi;θi) (3.14)

where c denotes the copula p.d.f. and fi denotes the p.d.f. of the i-th margin. In our setup,
the type of copula is restricted to a Gaussian or Student t copula and the marginal distributions
Fi are limited to Weibull or Gamma. A concrete example of such a joint statistical model is a
Gaussian copula with Weibull margins. The corresponding p.d.f. is given as

pZ(z;R,α1,β1, . . . ,αB,βB) =

1

|R|−
1
2

exp
(

−
1
2
ξT (R−1 − 1)ξ

) B∏

i=1

αi

βi

(

zi

βi

)αi−1

exp
{

−

(

zi

βi

)αi
} (3.15)

with ξ = [Φ−1(F1(z1;α1,β1)) · · ·Φ−1(FB(zB;αB,βB))]. The parameters of the copula model are
estimated by the IFM method we discussed in Section 2.3.3. Although, it is reasonable to in-
corporate as much information as we can into the feature representation of each image, we run
into problems when it comes to similarity measurement. In the previous section, we have seen
that the independency assumptions allowed to derive closed-form expressions for the Kullback-
Leibler divergence between two feature representations. In case of copula-based models how-
ever, no such closed-form expressions exist and we have to rely on alternative strategies. A first
pragmatic approachwe employed in [103] is to exploit the “Monte-Carlo” approximation of the
KL divergence. In particular, the KL divergence between two p.d.f.s f and f̃ can be written as

D(f||f̃) = Ef[log f(x) − log f̃(x)] (3.16)

where Ef denotes the expectation w.r.t. f. Hence, we can approximate D(f||f̃) by drawing a
random sample x1, . . . , xn from the model density f(x) and then calculate

DMC(f||f̃) ≈ 1
n

n∑

i=1

(

log f(xi) − log f̃(xi)
)

(3.17)

which converges to Eq. (3.16) as n → ∞. Unfortunately, this approach has two inherent dis-
advantages: first, due to the “Monte-Carlo” nature of the approximation, the KL divergence
will differ to a certain extent (depending on n) each time we compute the similarity between
two feature representations. Second, the approach is computationally expensive since we need
to estimate the joint statistical model for each query image, draw a random sample and com-
pute the likelihood. As we have shown in [103], the Monte-Carlo approximation is rather stable
even for small values of n (e.g. n = 103). However, the computational burden of estimation and
sampling still remains. As a second, and presumably more reasonable alternative to measure
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Figure 3.6: Information reduction by means of sampling every n-th coefficient.

similarity between two copula-based feature representations, we propose to employ the ML se-
lection rule of the probabilistic CBIR framework, see Eq. (3.3). This is a natural choice, since
it does not require sampling nor parameter estimation of the query image’s feature representa-
tion. Given a collection of query feature vectors z∗

1 , . . . , z
∗
K, the ML selection rule can be written

as

g(z∗
1 , . . . , z

∗
K) = arg min

r∈{1,...,L}

K∑

i=1

logpZ(z∗i ;θ
(r)

1 , . . . ,θ(r)

B ,Θ(r)) (3.18)

where θ
(r)

i denotes the parameter (vector) of the i-th marginal distribution of candidate image
Ir and Θ(r) denotes the corresponding copula parameter (vector). The number of available
query feature vectors K depends on the number of subband coefficients. Due to the fact that we
consider only the subbands of one particular decomposition level, K is constant. However, for
the computation of Eq. (3.18), we have to evaluate the marginal p.d.f.s as well as the multivari-
ate copula p.d.f. for each query feature vector. Hence, it seems reasonable to limit the number
of query feature vectors. Especially in case of the Student t copula this can be a critical issue as
we will see later on. Similar to the query feature vector extraction strategy presented by Vas-
concelos & Lippman in [187], we suggest a coefficient reduction step by sampling every n-th
transform coefficient (see Fig. 3.6 for a visualization of n = 2) and therefor reduce the data rate
by a factor of 1/n. This will speed up the ML selection process, however it might also negatively
affect the retrieval rate.

3.4.1 Experiments

In order to compare the copula retrieval approach to existing approaches in literature, we select
two approaches which were originally designed to deal with color (texture) images and do
not have to be artificially extended (e.g. by feature vector concatenation). We test against the
original CBIR approach of Vasconcelos & Lippman [186] and a very recently proposed approach
by Verdoolaege et al. [188]. The general principles of both approaches are briefly discussed next,
including the parameter configurations we use for our experiments.

Vasconcelos & Lippman, 2000 To a large extent, this approach has already been discussed in
Section 3.2. To handle color texture images, we implement the original interleaving strat-
egy: first, the image is converted to YBR colorspace and the color channels are decom-
posed separately by a 2-D DCT. Then, the sliding window approach is used to extract
the first D coefficients of each window which are interleaved according to the pattern
YBRYBR . . .. Hence, we obtain (3·D)-dimensional feature vectors. The only point in which
our implementation differs from the original work, is the actual retrieval part. Instead of
employing the ML selection rule, we rely on an approximation of the KL divergence be-
tween Gaussian mixture models, proposed by Goldberger et al. [57]. Regarding the final
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parameter configuration, we use C = 8 mixture components and extract D = 16 coeffi-
cients. During the EM algorithm, the (diagonal) covariance matrices are regularized by a
small positive constant ǫ > 0 to ensure positive definiteness.

Verdoolaege et al., 2008 An extension to the work of Do & Vetterli [40] is presented by Ver-
doolaege et al. [188] with the objective to allow color texture retrieval. The color channels
of an RGB image are first decomposed separately by a J-scale DWT. Coefficients from
corresponding subbands in the decomposition structure but from different color channels
are then modeled by MPE distributions (see Section 2.2.3) with fixed shape parameter β.
The authors assume independence of the horizontal, vertical and diagonal subband coef-
ficients as well as independence across scales and hence obtain a (J × 9) × (J × 9) block-
diagonal matrix Σ as the only parameter of the MPEmodel. Due to a missing closed-form
expression for the KL divergence between two MPE distributions, Verdoolaege et al. de-
rive a closed-form expression for the geodesic path between two MPE distributions on
the corresponding statistical manifold. The parametrization of this approach for our ex-
periments is as follows: we use a three-scale DWT decomposition and the parameter Σ is
estimated by the method of moments, introduced in Section 2.2.3. As in the original work,
β is fixed to 0.5.

Regarding the parameter configuration of our copula-based approaches, we choose the trans-
form coefficients of all detail subbands of DTCWT decomposition level three and use the stan-
dard RGB colorspace. Since the query images are 128× 128 pixel, we obtain R = 256 coefficient
vectors which are all used to perform image queries (i.e. K = R). Regarding the choice of copula,
we have to make some restrictions for the following computational reasons: first, we note that
estimation issues are no limiting factor for both the Student t or Gaussian copula since estima-
tion can be performed offline in case of the classic retrieval scenario (i.e. scenario A). Estimation
of the correlation matrix R in the Gaussian case is straightforward and can be computed effi-
ciently. Estimation of the Student t copula parameters ν and R is somewhat more involved,
but comparable to the effort required to estimate the Gaussian mixture model parameters of
[186] or the MPE parameter Σ [188]. However, the bottleneck of Student t copula approach is
the similarity measurement step, i.e. the computation of the ML selection rule. In particular,
we face the problem to calculate the univariate Student t quantiles t−1

ν (see e.g. [70]) for all
elements of each query feature vector. Except for a few special cases of ν, this computation is
quite numerically involved and far more complex than the evaluation of the Gaussian quantile
function Φ−1 (which basically requires evaluation of the inverse complementary error function
[1]). Especially for the large image repositories Outex, Stex and Vistex (full), this computational
disadvantage renders the Student t copula impractical. As a consequence, we restrict the pre-
sentation of the experimental results to the Gaussian copula and only exemplary show retrieval
results of the Student t copula in case of Vistex (small). We further note, that the data reduction
strategy we suggest in Fig. 3.6 does not remedy the computational problems of the Student
t copula approach. In order to achieve comparable runtime behavior to the Gaussian copula
model we have to reduce the number of query feature vectors to a point where the retrieval rate
drops below reasonable levels.

Results

First, we present a ROC curve comparison for the two types of copula and the two types of
marginal distributions, see Fig. 3.7 (left). We observe that the ROC curves of the Student t and
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Approach Outex Stex Vistex (small) Vistex (full)

Copula (Gaussian, Weibull) 44.03(2) 70.64(1) 89.54(2) 63.01(2)
Copula (Gaussian, Gamma) 43.35(3) 69.37(2) 89.12(3) 61.92(4)
Verdoolaege et al., 2008 29.89(4) 63.66(3) 89.72(1) 62.29(3)
Vasconcelos & Lippman, 2000 54.66(1) 65.44(4) 87.71(4) 65.12(1)

Table 3.6: Retrieval results at the operating point of K = 16 retrieved images on four texture databases.
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Figure 3.7: ROC curve comparison for joint statistical models relying on either a Gaussian or a Student t
copula (left); Visualization of the trade-off between retrieval rate (using 16 retrieved images) and retrieval
time as a function of the data reduction rate 1/n (right).

Gaussian copula are grouped together and there is a slight margin between the two groups. In
accordance to the GoF analysis of Section 2.3.4, the models based on the Gaussian copula lead
to better retrieval performance than the models relying on the Student t copula. This is also
very convenient from a computational point of view, since the Gaussian copula is substantially
easier to handle with respect to parameter estimation and likelihood computation.

In the second experiment, we fix the Gaussian copula and compute ROC curves (see Fig. 3.8)
for a comparative study to [186] and [188]. From Fig. 3.8, we observe that the Gaussian copula
with Weibull margins is consistently ranked among the top two approaches and performs best
on Stex. The difference in using either Gamma or Weibull margins is neglectable in all cases.
This is again a computational advantage for ML selection, since computation of the Weibull
c.d.f., see Eq. (2.34), is straightforward due to a closed-form expression. In contrast, evaluation
of the Gamma c.d.f., see Eq. (2.51), involves computation of the regularized incomplete Gamma
function [1]. Regarding the overall ranking of the approaches, it is hard to identify a clear
winner. We observe a situation similar to Fig. 3.5 where the ranking is not consistent over
all databases. The approach of [186] for example is ranked first on Outex and Vistex (full),
however exhibits worse retrieval performance on Stex and Vistex (small). The retrieval results
at the operating point of 16 retrieved images are listed in Table 3.6, including the corresponding
ranks of each approach (in subscripted parentheses). The fluctuations in the rankings highlight
the requirement for large-scale tests on more than one database yet another time. Unfortunately,
such studies often have to be omitted in research papers due to space limitations.

In a final experiment, we study the impact of reducing the number of query feature vectors
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Figure 3.8: ROC curve comparison of the (Gaussian) copula-based CBIR approaches to the works of [188]
and [186] for 40 retrieved images.

for the computation of the ML selection rule by a factor 1/n. As noted before, the total number
of available query feature vectors on DTCWT level three is R = 256 which corresponds to
n = 1. We select the Gaussian copula with Weibull margins for the following experiment and
let n take on powers of two, i.e. n ∈ {1, 2, 4, 8, 16}. In order to illustrate the performance gain
in retrieval time, we measure the time it takes to perform one query on a database of 1024
images. ML selection is implemented in ANSI C and runtime is measured on a 64bit Intel Xeon
2.27Ghz Quad-Core system with 24Gb of memory running Linux 2.6.18. The right part of Fig.
3.7 visualizes the retrieval rate at the operating point of 16 retrieved images in direct comparison
to the retrieval time per query as a function of the data reduction rate 1/n. The slope of the bold
black line illustrates the decrease in retrieval time as we reduce the number of query feature
vectors. One of the first things we notice is, that the slope of the retrieval rate is similar for all
databases. We suppose that it could even be possible to fit a suitable function to the retrieval
rate curve of one database and predict the retrieval rate decrease for the other databases. Next,
we observe that the drop-off in retrieval rate for n = 2 is only ≈ 0.7 percentage points, although
we achieve a considerable performance gain in retrieval time of almost 50%. In consideration of
the fact that retrieval time drops to ≈ 25% for n = 4, even the decrease in retrieval rate of ≈ 2.5
percentage points on average seems acceptable. In general, the final setting of nwill depend on



Chapter 3. Texture Image Retrieval 68

the field of application. Nevertheless, we have shown that a significant speedup in computation
time can be achieved by using fewer query feature vectors for similarity measurement while
keeping the retrieval rate at a high level. Eventually, we eliminated the inherent disadvantage of
our Monte-Carlo similarity measurement strategy suggested in [103]. This renders the copula-
based CBIR approach applicable even on large databases.

3.5 Discussion

In this chapter, we introduced two novel retrieval approaches for texture images. In the first
part, we focused on a lightweight approach to allow application in computationally demand-
ing retrieval scenarios. In the second part, we showed that the incorporation of additional
information about the association structure between DTCWT coefficients leads to a consider-
able increase in retrieval rate, however, at the cost of runtime performance. By introducing a
simple data reduction strategy, we could enhance runtime performance while keeping the re-
trieval rate at almost the same level, at least for reasonable reduction rates. As a matter of fact,
this enables deployment of the copula-based approaches in retrieval scenario A, even on large
databases. Nevertheless, the complexity of the ML selection process still seems too high for
scenario B. In contrast to that, the DTCWT, Gamma (Mom.) approach is perfectly suitable when
runtime performance is a crucial issue. The computational complexity of the DTCWT is linear
in the number of input pixels. Further, the feature representation only requires to determine the
moment estimates (linear complexity) of the Gamma distribution and image similarity can be
computed in constant time.

A second remarkable observation we made throughout all experiments is the low consis-
tency of the rankings of the approaches with respect to the image databases. The relative differ-
ence in retrieval rate between two approaches tends to vary considerably as well. We conclude,
that it is not reasonable to claim superiority of an approach in a comparative study by present-
ing results on just a few example textures of one database. These results can usually not be
generalized to other databases. It is even possible that the situation might be completely differ-
ent when changing the image set. For that reason, we strongly argue to adopt the strategy of
testing on at least two or three texture databases in any experimental study. On the one hand,
this enhances the quality of the presented results and on the other hand conveys an impression
about the suitability of an approach with respect to different kinds of image sets.

As a last part of this discussion, we raise the question whether the criterion of splitting a set
of texture images into equally sized parts and using each part as a query is the most suitable
way to evaluate the quality of a texture retrieval system. Although, this has become the de-facto
standard for evaluation, there is an inherent drawback: lets assume, that two parent images
basically show the same visual content, e.g. the same surface material. In such a situation, it
is possible that a retrieved image is perceptually almost identical to the query but stems from
another parent and is hence classified as a wrong retrieval result. Taking a closer look at the
images of the Outex database reveals, that this is exactly the reason for the rather low retrieval
rates. As a consequence, the ROC curves might convey a wrong impression about the actual
quality of an approach. The strategy of having a number of predefined categories might be a
possible alternative here, although it seems hard to establish a categorization for a large number
of images. At which point for example are the images of a category too different so that we have
to create two separate categories? Further, category assignments will inevitably differ from
user to user because of differences in visual perception. For these reasons, we consider the
establishment of a suitable retrieval evaluation setup as an important issue of future research.



Chapter 4

Medical Image Classification

In this chapter, we discuss a classification problem in the field of medical image analysis. In
particular, we are concerned with the prediction of the histopathological diagnosis of colorectal
lesions, based on the mucosal surface structures which can be observed in High Magnification
Chromoscopic Colonoscopy (HMCC). Our focus is on methods which employ wavelet coeffi-
cient statistics as a primary source to construct image features for classification. We will see,
that this classification problem is strongly related to the texture retrieval setting of the previous
chapter. Actually, towards the end of our discussion, we show that considering the classification
problem from the viewpoint of probabilistic image retrieval leads to an elegant solution with
respect to scalability and computational cost. Major parts of this chapter recently appeared in:

[98] R. Kwitt and A. Uhl. Modeling the marginal distributions of complex wavelet coeffi-
cient magnitudes for the classification of zoom-endoscopy images. In Proceedings of the

IEEE Computer Society Workshop onMathematicalMethods in Biomedical Image Analysis (MM-
BIA’07), pages 1–8, Rio de Janeiro, Brasil, 2007

[102] R. Kwitt and A. Uhl. Multi–Directional Multi-Resolution Transforms for Zoom–Endoscopy

Image Classification (Best Paper Award at CORES 2007), volume 45 of Advances in Soft Com-

puting, pages 35–43. Springer, 2008

[64] M. Häfner, R. Kwitt, A. Uhl, A. Gangl, F. Wrba, and A. Vecsei. Feature-extraction from
multi-directional multi-resolution image transformations for the classification of zoom-
endoscopy images. Pattern Analysis and Applications, 12(4):407–413,December 2009

[99] R. Kwitt and A. Uhl. Color eigen-subband features for endoscopy image classification. In
Proceedings of the 33rd IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP’08), pages 589–592, Las Vegas, Nevada, United States, 2008

[100] R. Kwitt and A. Uhl. Color wavelet cross co-occurrence matrices for endoscopy image
classification. In Proceedings of the 3rd International Symposium on Communications, Control
and Signal Processing (ISCCSP’08), pages 715–718, St. Julians, Malta, 2008
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The chapter is structured as follows: in Section 4.1, we present the medical perspective of
our problem and discuss related work on the topic of computer-assisted diagnosis of colorectal
cancer. Section 4.2 then introduces three novel feature extraction approaches in a discriminant
classifier setup. An alternative approach, based on the idea of generative models is proposed in
Section 4.3. Eventually, we discuss the evaluation setup and present an extensive comparative
study on classification/prediction performance in Sections 4.4 and 4.5. The chapter concludes
with a discussion of the main contributions and an outlook on future research.

4.1 The Medical Presentation of the Problem

According to the statistics of the American Cancer Society1, colorectal cancer is the third most
commonly diagnosed cancer and the third leading cause of US cancer deaths in both men and
women. Colorectal cancer is a paramount example where existing knowledge in combination
with early screening procedures can prevent death and save lives. Computer-aided diagnosis
systems have gained considerable research interest recently. A lot of work has been done on
the automated discrimination between normal and cancerous tissue using microscopic imag-
ing, mainly by means of texture analysis [44, 166]. While these studies work directly with tissue
samples of resected specimen obtained from biopsies, other works have studied the versatil-
ity of endoscopic video-frame processing for the detection of colorectal polyps [79, 122] and
the assessment of colorectal abnormalities [90, 78, 75, 74]. However, conventional white-light
video colonoscopy as it is used in these studies has its limitations, especially with respect to
the detection of flat and depressed lesions [73]. The emergence of high-magnification chromo-
scopic colonoscopy (HMCC) poses several advantages over white-light video colonoscopy. In
HMCC, high-magnification endoscopes with zoom-factors of up to 150× are used to visualize
the appearance of the colon mucosa. The high optical zoom and resolution reveal characteris-
tic surface patterns (i.e. Pit Patterns) which can be analyzed by the experienced physician to
predict the histological diagnosis. This visual inspection is guided by the Kudo criteria for Pit
Pattern analysis. Usually, chromoagents such as indigo-carmine or methylene-blue are used
during endoscopic examination to enhance the visual appearance of the observed tissue. As a
matter of fact, HMCC is suggested as an in vivo staging tool to enhance the diagnostic process
and guide therapeutic strategies.

4.1.1 Pit Pattern Analysis

Colorectal cancer predominantly develops from adenomatous polyps (adenomas), although
adenomas do not inevitably become cancerous. Polyps of the colon are a frequent finding
and are usually divided into metaplastic, adenomatous or malignant. Since the resection of
all polyps is rather time-consuming, it is imperative that those polyps which warrant resection
can be distinguished. The classification scheme presented by Kudo et al. [92] divides the mu-
cosal crypt patterns into five types (Pit Patterns I–V). Fig. 4.1 provides a schematic illustration
of the different Pit Patterns and Table 4.1 gives a textual description of their visual appearance.
Exemplary HMCC images are shown in Fig. 4.2. While Pit Patterns I and II are characteristic of
benign lesions and represent normal colon mucosa or hyperplastic polyps (i.e. non-neoplastic
lesions), Pit Patterns III to V represent adenomatous and carcinomatous structures (i.e. neoplas-
tic lesions).

1http://www.cancer.org (accessed on March, 19th, 2010)

http://www.cancer.org
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(a) I (b) II (c) III-S (d) III-L (e) IV (f) V

Figure 4.1: Schematic illustration of the six colorectal crypt architectures (i.e. Pit Patterns), according to
the Kudo criteria [92].

(a) I (b) II (c) III-S (d) III-L (e) IV (f) V

Figure 4.2: Representative HMCC images of the different Pit Patterns. Note that the types I and II show
non-neoplastic lesions while III-L, III-S, IV and V show neoplastic disease.

Pit Pattern Visual Appearance

I Round pit (normal pit)
II Asteroid pit, stellar or papillary
III-S Tubular or round pit, smaller than type I pit
III-L Tubular or round pit, larger than type I pit
IV Dendritic or gyrus-like pit
V Irregular arrangement and sizes of III-S, III-L, IV

Table 4.1: Description of the visual appearance of the colorectal crypt patterns observed during HMCC.

At first sight, the Kudo criteria seems to be straightforward and easy to be applied. Nev-
ertheless, it needs some experience and exercising to achieve good results. Correct diagnosis
very much relies on the experience of the gastroenterologist as the interpretation of the Pit Pat-
terns may be challenging [72]. Computer-assisted diagnosis is motivated by the work of Kato
et al. [81], where the authors state that assessing the type of mucosal crypt patterns can actually
predict the histological findings to a very high accuracy. Regarding the correlation between the
mucosal Pit Patterns and the histological findings, several (human-based) studies report good
results for distinguishing non-neoplastic from neoplastic lesions, although with different diag-
nostic accuracies. A recent comparative study by Kato et al. [80] reports a prediction accuracy
of 99.1% by means of HMCC and Pit Pattern analysis. Hurlstone et al. [73] claim a rate of ap-
proximately 95%, Tung et al. [178] claim 80.1%, however, at very low sensitivity of only 64.6%.
In another work, Fu et al. [50] report 95.6% for HMCC compared to 84.0% using conventional
white-light colonoscopy and 89.3% using chromoendoscopy without magnification. An even
larger spread in prediction accuracy between HMCC and conventional white-light colonoscopy
is listed by Konishi et al. [88] with 92% and 68%, respectively. In addition, inter-observer vari-
ability of HMCC-based diagnosis has been described at least for Barret’s esophagus [124]. This
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inter-observer variability may to a lesser degree be also present in the interpretation of Pit Pat-
terns of colonic lesions.

4.1.2 Objective

The objective of the computer-aided diagnosis system is two-fold: first, we intend to reliably
discriminate Pit Patterns I and II from III to V, which amounts to identify non-neoplastic and
neoplastic lesions. According to the medical literature, this is the clinically most relevant appli-
cation scenario of the Pit Pattern analysis scheme. In the following, we will denote this problem
as the two-class problem. Second, we focus on a more therapeutically relevant subcategoriza-
tion in which neoplastic lesions are further discriminated into invasive and non-invasive types.
We adhere to the Pit Pattern assignment of Hurlstone et al. [73] where the authors assign Pit
Patterns III-S and V to the invasive class and III-L and IV to the non-invasive class. The classes
differ in the treatment decision. Non-invasive neoplastic disease allows endoscopic mucosal re-
section (EMR), whereas invasive neoplasia may require surgical resection. We denote the more
fine-grain classification setup as the three-class problem.

4.2 Prediction by Means of Discriminant Classifiers

As a first and straightforward way to cope with the prediction problem at hand is, to employ a
discriminant classifier approach. The basic idea is, to determine some sort of decision boundary
from the feature representation of each image and the known class membership in a separate
training stage of the system. From a Bayesian point of view, this amounts to estimation of the
posterior probability of each class based on a set of training images. In the following parts
of this section, we introduce three approaches to determine discriminative image features for
use in conjunction with a discriminant classifier. All three approaches are motivated by ideas
from texture classification and retrieval since the Pit Pattern images exhibit strong texture char-
acteristics such as regularity or homogeneity. A schematic system overview of a discriminant
classifier based system is shown in Fig. 4.3 for the discrimination between non-neoplastic and
neoplastic disease. Since we are primarily concerned with the development of image feature
vectors and less with the classification side, we use a rather simple 1-Nearest-Neighbor classifi-
cation strategy [41]. On the one hand, this allows a fair comparison of different feature sets and
on the other hand, requires storage of the feature vectors in the classification/prediction step
only.

4.2.1 Distribution Parameters as Image Features

In [102] and [64], we propose a feature extraction strategy that bears a close relation to the tex-
ture retrieval system we introduced in [99]. Motivated by the Gabor wavelet approach of Man-
junath &Ma [117] and the shortcomings of the DWTw.r.t. to image analysis (see Section 2.3), we
propose to use the DTCWT for feature transformation and to compute the mean and standard
deviation of the complex coefficient magnitudes as features. In case of grayscale images, only
the luminance channel is decomposed, in case of color images the channels are decomposed
separately. The features are then arranged in feature vectors z = [µ11 σ11 . . .µJB σJB], where µij

denotes the mean of the coefficient magnitudes in subband i at DTCWT level j. Given that B de-
notes the total number of detail subbands, i.e. B = 6J (grayscale) or B = 18J (color), the feature
vectors are z ∈ R2B. We refer to this features as the Energy features. In [98], we present a refine-
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Figure 4.3: System overview of prediction based on discriminant classifiers for the non-neoplastic vs.
neoplastic case. The illustration on the right-hand side shows the principle of assigning the class label of
the nearest-neighbor.
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Figure 4.4: Extraction of a feature vector z from DTCWT subband coefficient magnitudes on scale j, either
by determining the sample mean µji and sample standard σji deviation (as in [117]) or by determining
Weibull distribution parameters αji,βji.

ment of this approach by relying on the statistical models introduced in Chapter 2.3. Instead of
computing the rather arbitrary features of sample mean and sample standard deviation (hence,
implicitly assuming normality), the transform coefficient magnitudes of each subband are mod-
eled by two-parameter Weibull or Gamma distributions. A feature vector is then composed
of the fitted (e.g. ML estimation) distribution parameters, i.e. z = [α11 β11 . . .αJB βJB]. The
composition of feature vectors based on the mean/standard deviation and Weibull/Gamma
distribution parameters is visualized in Fig. 4.4 for the detail subbands of an arbitrary DTCWT
decomposition level j. Consequently, an admissible parameter configuration of this approach
is the tuple ∆ = (Colorspace, Feature) where Feature either denotes the energy features or the
distribution parameter features.

4.2.2 Cross Co-Occurrence Matrices in the Wavelet Domain

In [100], we extend the concept of classic co-occurrence matrices to capture the information
between DWT detail subband pairs of different color channels. Several other studies have pro-
posed to compute color-texture features in some transform domain as well. Karkanis et al. [79]
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(a) Pit Pattern III-L (b) Pit Pattern II

Figure 4.5: Two exemplary co-occurrence matrices of different pit-pattern types using a quantization
factor ofQ = 100 and a displacement vector d = [−1 1].

for example, compute co-occurrence matrices from second-level DWT detail subbands at vari-
ous angles and then determine covariances between Haralick features [65]. Other approaches
include Wavelet Energy Correlation Signatures (WCS) proposed by Van de Wouwer et al. [35] or
Gabor opponent features proposed by Jain & Healey [76]. The latter two are very similar in
nature, but reside in different transform domains. In the following, we introduce a novel set of
color-texture descriptors, based on second-order statistics from cross co-occurrence matrices, a
concept first suggested by Palm et al. [145, 143]. The cross co-occurrence matrices are computed
between wavelet detail subbands of different color channels.

First, let us review the concept of co-occurrence matrices computed on intensity images.
We assume that an image is given in matrix notation C0 = {c0ik}06i,k<N where c0ik denotes the
intensity value of the pixel at location (i, k) and the superscript ’0’ signifies that we are working
in the pixel domain. For simplicity, the location (i, k) will be abbreviated by the lowercase
variables x,y ∈ {0, . . . ,N − 1}2. In case of vector images, we extend this notation by another
superscript p or p ′ to signify the image plane. Hence, in case of RGB images for instance, p ∈
{R,G,B}. The classic co-occurrence matrixMp

d (i, j) at position (i, j) captures the joint occurrence
of intensity values i and j separated by the displacement vectord ∈ N

2. The displacement vector
thus implicitly defines the orientation and the distance of considered pixel pairs. Formally, Mp

d

is defined as
M

p
d(i, j) = P

(

c0x = i∧ c0y = j|x − y = d
)

. (4.1)

This formulation of the co-occurrence matrix is specifically tailored for single-channel images,
e.g. grayscale images. Depending on the type of texture in an image, we can observe char-
acteristic patterns in the shape of Mp

d . To visualize this characteristic shape, two exemplary
co-occurrence matrices are shown in Fig. 4.5. Unless any quantization step is employed, the
final co-occurrence matrix has 256 × 256 entries and is sparsely populated in general. Hence,
in any practical application the intensity values are mapped to Q ≪ 256 values by using the
mapping g : {0, . . . , 255} → {0, . . . ,Q− 1}, x 7→ ⌊x/255× (Q− 1) + 0.5⌋.

A first extension of the classic co-occurrence matrix is proposed by Palm et al. [144] with
the objective to capture the joint occurrence of intensity values between image planes p and p ′.
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d = [−1 1]

(a) Classic

d = [+1 + 1]

(b) Multichannel

d = [+1 + 1]

Red channel

Green channel

(c) CWCC

Figure 4.6: Illustration of three different types of co-occurrence matrices. On the left-hand side, we see the
classic co-occurrence matrix for d = [−1 1]. For the grayscale value v, Mp

d(v, v) will be incremented by +2.
In the middle, we see the extension to cross co-occurrence matrices between different image channels and
on the right-hand side we see the principle of CWCCmatrices between the diagonal DWT detail subbands
(level one) of the red and green color channel.

Formally, this can be written as

Mp,p′

d (i, j) = P

(

c0,px = i∧ c0,p
′

y = j|x − y = d
)

. (4.2)

According to the terminology in [144], co-occurrence matrices as defined by Eq. (4.1) are de-
noted as within co-occurrence matrices and co-occurrence matrices as defined by Eq. (4.2) are
denoted as cross co-occurrence matrices. Generally, the latter concept can be applied to all kinds
of vector images. In [145] for example, images are analyzed on different scales, with the scale
space generated by repeatedly applying Gaussian filters with varying variance.

Next, we leave the spatial domain and extend the concept of cross co-occurrence matrices to
the wavelet domain. We refer to this extension as the Color Wavelet Cross Co-occurrence (CWCC)
matrices. Let D

s,p
k denote the k-th DWT detail subband at scale s and color channel p. The

CWCC matrix Mp,p′

d,s,k,k′(i, j) at position (i, j) between two arbitrary subbands Ds,p
k and Ds,p′

k′

can be defined as

Mp,p′

d,s,k,k′(i, j) = P

(

cs,k,p
x = i∧ cs,k′ ,p′

y = j|x − y = d
)

. (4.3)

The additional superscripts for the transform coefficients are necessary to completely specify
their position in the decomposition structure. For our experiments, we follow the restriction
k = k ′, which means that only pairs of subbands at equal positions in the decomposition are
considered. As with intensity images, Eq. (4.3) requires a quantization step before computation.
We use three quantization factors Q ∈ {64, 128, 256} for the experiments. We further point out,
that by using Eqs. (4.2) and (4.3), it is now possible to have a zero-displacement vector d =

0 = [0 0]T as well. This bears a close relation to two-dimensional histograms [143]. The classic
co-occurrence matrix approach together with the extensions of cross co-occurrence and CWCC
matrices is visualized in Fig. 4.6.

The next imperative step we have to conduct is a dimensionality reduction step. We cannot
directly use the entries of the co-occurrence matrices as inputs to a discriminant classifier for
the following reason: even by using a quantization factor of Q = 64, we would end up with
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642-dimensional feature vectors. According to [41], the number of samples needed to train a
classifier grows exponentially with the number of input dimensions (known as the curse of di-

mensionality). Since the number of image samples we have is rather small, using the CWCC
matrices directly is computationally infeasible. To remedy this problem, we compute a subset
of the popular Haralick [65] second-order statistics from the CWCCmatrices which are then as-
sembled into feature vectors. We define the Haralick features Contrast, Correlation, Homogeneity
and Energy as

Contrast

F1 =

Q−1∑

i=0

Q−1∑

j=0

|i− j|2Mp,p′

d,s,k,k′(i, j) (4.4)

Correlation

F2 =

∑Q−1
i=0

∑Q−1
j=0 (i − µi)(j− µj)M

p,p′

d,s,k,k′(i, j)

σiσj

(4.5)

Homogeneity

F3 =

Q−1∑

i=0

Q−1∑

j=0

Mp,p′

d,s,k,k′(i, j)

1 + |i− j|
(4.6)

Energy

F4 =

Q−1∑

i=0

Q−1∑

j=0

(

Mp,p′

d,s,k,k′(i, j)
)2

(4.7)

where µi,σi denote the horizontal mean and variance and µj,σj denote the vertical mean and
variance, respectively. In order to signify that the features depend on the particular type of
co-occurrence matrix, we adhere to the notation Fi(M

p
d ) to denote that feature Fi is computed

based onMp
d . In our experiments, we evaluate the discriminative power of the different features

separately. Regarding the dimensionality of the final feature vectors, we note that a J-scale
DWT produces a 3J-dimensional feature vector z(p,p′) for a given combination (p,p ′). The
final feature vector z for an image is constructed as a concatenation of all (i.e. six in case of three
color channels) possible combinations. To provide a concrete example, consider the case of RGB
images: we have z(R,G), z(R,B) and z(B,G) which leads to the final 9J-dimensional feature vector
z = [z(R,G) z(R,B) z(B,G)]. An admissible parameter configuration ∆ of the CWCC approach is
the five-tuple ∆ = (Transform,Colorspace,d,Q, Fi).
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4.2.3 Color “Eigen-Subbands”

The last feature extraction approach we discuss in the context of discriminant classifiers, is
the Color Eigen-subband (CES) approach we proposed in [99]. In order to overcome the shift-
dependency problem of the DWT – caused by downsampling the filter outputs by two – we
replace the DWT by a non-subsampled variant known as the Stationary Wavelet Transform
(SWT) [147]. This transform is implemented by the undecimated á-trous algorithm [165] and
has a redundancy factor of 3J, where J denotes the maximum decomposition depth. In the ter-
minology of Palm [143], we aim for an integrative color-texture feature extraction approach. By
integrativewe mean a technique which directly incorporates information among color channels.
In contrast to that, it is always possible to artificially incorporate color channel information
by means of feature vector concatenation, see Section 4.2.1. However, the problem of feature
vector concatenation is, that we neglect the association structure between the wavelet detail
subbands of different color channels. At least for the RGB colorspace, we have shown that the
DWT/DTCWT transform coefficients exhibit a considerable degree of association, see Sections
2.2.3 and 2.3.3. We strongly presume, that the situation is similar in case of the SWT.

To avoid the loss of information, we propose to compute statistics of PCA [41] decorrelated
detail subbands as image features. Decorrelation of color channels in the pixel domain is ex-
ploited by Heeger & Bergen [67] in the context of texture synthesis. The reason why we perform
decorrelation in the wavelet domain is rooted in the fact that decorrelation of the color channels
does not guarantee decorrelation of the transform coefficients, as Simoncelli et al. showed in
[167]. However, Simoncelli et al. further point out, that decorrelation in the wavelet domain
by means of PCA does not lead to decorrelated subband in all cases either. Instead of using
PCA, the authors propose to use Independent Component Analysis (ICA) as an alternative.
Nevertheless, we retain the PCA approach, since the setup of [167] differs from our setup in
the following sense: in [167], the coefficient matrix is composed of transform coefficients from
all levels and all color channels by randomly selecting a collection of coefficients. In our setup,
however, the coefficient matrix is constructed by selecting just the transform coefficients of the
same subband but on different color channels. Our experiments show that decorrelation of the
transform coefficients is acceptable in this special case, e.g. see Fig. 4.9. Further, computation
of the PCA is less expensive than computation of ICA.

We next explain PCA-based decorrelation by means of an example: we assume RGB images
and that each color channel is decomposed separately by a J-scale DWT. Without loss of gen-
erality, we consider the k-th detail subband on decomposition level j, denoted by D

j,p
k (the su-

perscript p denotes the color channel). The transform coefficients are denoted by cp
i , 1 6 i 6 N

using linear indexing. We omit the subband and scale specifiers k and j for readability. The
construction of the coefficient matrix X is illustrated in Fig. 4.8. Each row of the matrix X is
an observation vector ci ∈ R3. To decorrelate the components of the observation vector, PCA
works by diagonalizing the sample covariance matrix S, using the projection

S̃ = ΦTSΦ (4.8)

where Φ denotes the matrix of eigenvectors corresponding to the eigenvalues of S (sorted in
ascending order). Since the sample covariance matrix S can be written as the product

S = ΦΛΦ with Λ =





λ1 0 0
0 λ2 0
0 0 λ3



 (4.9)
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Figure 4.8: Arranging DWT detail subband transform coefficients of different color channels into a data
matrix X.

it is evident that S̃ = Λ. Hence, the sample covariance between two dimensions is zero. The
variance along the principal axis is given by the eigenvalues λi. We can now directly use the
eigenvalues as features for classification. In fact, all the variance information is now packed into
the eigenvalues λi. To obtain the decorrelated sample yi, we first conduct the transformation
yi = ΦT ci and then arrange the vectors yT

i as rows of a new data matrix Y . We finally obtain
the Color Eigen-Subbands (CES) by reshaping the columns of Y to threeN×Nmatrices.

Given that we use the variances along the principal axis (i.e. the eigenvalues) as image
features, we obtain a 9J-dimensional feature vector for each image. Since the eigenvalues have
completely different ranges, we have to be careful when computing the Euclidean distance
between feature vectors, though. We remedy that problem by normalizing the elements of the
feature vectors by subtracting the sample mean and dividing by the standard deviation. As
an extension to the work of [99], we adopt the CES approach to work with the complex detail
subbands of the DTCWT using only the magnitude information. Due to the larger number
of subbands per scale, the dimensionality of the feature vectors is doubled. An admissible
parameter configuration of the CES approach is the tuple ∆ = (Transform,Colorspace).

4.3 Prediction by Means of Generative Models

In the context of our classification problem, we identify three critical issues related to discrim-
inant classifier approaches: first, classifier training usually requires a sufficiently large number
of training samples. Unless this can be guaranteed, we inevitably run into overtraining issues.
Second, most classifiers additionally require balanced class distributions. Unfortunately, we
cannot guarantee this requirement either. Since some Pit Patterns (e.g. III-S) occur very rarely,
the image distribution tends to be highly unbalanced. Neglecting this fact leads to overtraining
in favor of classes with a large number of samples (e.g., see [135]). Third, we want to ensure
that images with an already assigned histopathological diagnosis can be added to the image
database at any time without effort. This avoids presumably time-consuming and unnecessary
maintenance operations which might prevent the actual deployment in clinical practice. Since
discriminant classifiers usually need re-training in case new samples are added, this require-
ment cannot be met either.

As a possible solution to these disadvantages, we propose to employ a prediction strategy
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Figure 4.9: Scatterplot of DWT subband transform coefficients (horizontal detail subband on DWT level
two of a Pit Pattern II image) before and after applying PCA. The pairwise (linear) correlation between
each component is approx. zero after PCA.

based on generative models. The baseline for this proposal is the framework of Bayesian image
retrieval [186] which we already discussed in Chapter 3. Considering the classification prob-
lem from the viewpoint of image retrieval brings along several advantages which correspond
to the requirements stated above. An unknown HMCC image is considered as a query image
in the probabilistic framework and classification is performed by first searching for the most
similar image in the database of available HMCC images with an assigned histological diagno-
sis. Next, the class of the retrieved image is used as a prediction for the class of the unknown
image. In classification terminology, this resembles a nearest neighbor classifier. Fig. 4.10 shows
the two possible strategies for class prediction: (i) by searching for the feature representation
pZ(z;Θr) which minimizes the KL divergence to the feature representation pZ(z;Θ∗) of the
unknown image (left branch), or (ii) by searching the feature representation which maximizes
the (log) likelihood of the unknown image’s coefficient data (right branch). We don’t want to
go into detail too much at this point, since the theoretical foundations are given in Chapter 3 to
which the reader is referred for further information. Eventually, we highlight the two striking
advantages of the generative model based approach: first, no classifier training is required at
all. Depending on which prediction strategy we use, it might not even be necessary to estimate
the model parameters of the query image (i.e. for likelihood maximization). Hence, we conse-
quently avoid overtraining issues and are not tempted to overly optimize feature sets by means
of feature subset selection for example. Second, images with an existing histopathological diag-
nosis can be added to the database at any time and are immediately available for future image
queries.

4.4 Classification Setup

The classification setup for the discriminant classifier approaches is as follows: we restrict our
study to the one Nearest-Neighbor (1-NN) classifier we used in [98, 102, 64, 99, 100], since we
focus on a comparison of the various feature extraction approaches and do not conduct a study
on the performance of different classifiers. We further omit any feature subset selection or other
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Figure 4.10: Prediction of the class label of an unknown image I∗ by means of (i) finding the feature
representation with the smallest KL divergence to the query image’s feature representation (left branch)
or (ii) by searching for the feature representation which maximizes the log-likelihood of the query image
data (right branch).

tuning steps to avoid overtraining issues. In case of the generative model based approaches, the
classification strategy is straightforward, since the class label of the retrieved image determines
the class label of the unknown image anyway.

To obtain an estimate of classification accuracy, we use the method of Leave-One-Out Cross-
validation (LOOCV) [41]. Given a dataset of L samples, LOOCV works by successively leaving
out one sample of the whole dataset and performing the training procedure on the remaining
L − 1 samples. The classification accuracy is then estimated as the number of times the left-out
sample is correctly classified. Note, that in case of nearest neighbor classification paradigm, the
training procedure just involves storage of the feature vectors. For the discriminant classifier
approaches, we rely on the Euclidean distance d(v,vj) = ‖vi − vq‖ between two feature vectors
vi and vj. As mentioned before, it is reasonable to conduct a normalization step before com-
puting the Euclidean distance. This is accomplished by subtracting the mean and dividing by
the standard deviation. Formally, the normalized j-th element of feature vector vi is computed
as vij = (vij − vj)/σ

2
j . Of course, the standard deviation σj and the mean vj have to be repeat-

edly computed in each LOOCV iteration to ensure that no information of the left-out sample is
included.

4.5 Experiments

We perform a comparison of the feature extraction approaches introduced in the context of dis-
criminant classifiers and the approaches introduced in the context of generative models. In the
former case, we include the approaches of Gabor wavelets of Manjunath & Ma [117] (see Sec-
tion 3.3.2), the WCS features of Van deWouwer et al. [35] and the color histograms proposed by
Swain & Ballard [175] as a reference. Gabor wavelet features are commonly used in texture clas-
sification and retrieval literature, WCS features have been successfully employed in the context
of endoscopic video frame processing [79] and the method of color histograms recently ap-
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peared in context of computer-assisted Pit Pattern classification [63]. The latter two approaches
are described below. In case of the generative model based approaches, we compare our re-
trieval approaches of Sections 3.3 and Section 3.4 to the approaches of Vasconcelos & Lippman
[186] and Verdoolaege et al. [188]. We refer the reader to Chapter 3 for a detailed description
of the retrieval approaches. Again, we adhere to the convention to identify an approach by the
names of the authors and the year of publication.

Van de Wouwer et al., 1997 In [35], Van de Wouwer et al. introduce the approach of Wavelet

Energy Correlation Signatures (WCS). The authors propose to decompose the color channels
of an image by a J-scale DWT and then calculate the correlation between all combinations
of subband pairs on different channels. In particular, given a RGB image and a three-
scale DWT, we obtain 27-dimensional feature vectors. Since this approach can be easily
extended to work with the SWT and DTCWT, we will also consider these cases in our
experiments. Note that in case of the DTCWT, the size of the feature vectors is doubled.

Swain & Ballard, 1991 The method of color histograms was introduced by Swain & Ballard
[175] in an effort to evaluate whether color information can effectively capture image
characteristics. The authors compute three-dimensional histograms from the intensity
values of each color channel. Since a full color histogram would consist of 2563 bins (very
sparsely populated), intensity values are uniformly quantized to obtain a N1 × N2 × N3

bin color histogram withNi ≪ 256. This eventually allows computationally efficient sim-
ilarity measurement using the histogram intersection as a similarity measure. For our
experiments, we use the RGB color space and a quantization setting ofN1 = N2 = N3 = 8.

4.5.1 Image Acquisition

Our original set of images consists of 269 RGB images (53 patients, either 624× 533 or 586× 502
pixel) acquired in 2005–2009 at the Department of Gastroenterology and Hepatology of the
Medical University of Vienna using a zoom-endoscope (Olympus Evis Exera CF-Q160ZI/L)
with amagnification factor of 150×. All imageswere selected by the gastroenterologist conduct-
ing the colonoscopy with special emphasis to provide images with similar lightning conditions
at approximately the same camera angle. To enhance the visual appearance of the mucosa, dye-
spraying with indigo-carmine was applied and biopsies or mucosal resections were taken to
obtain a histopathological diagnosis (our ground truth). The histology was obtained by a pathol-
ogist blinded to the colonoscopic procedure. Table 4.2 lists the histologies for the observed Pit
Patterns as well as the corresponding occurrences.

In order to increase the number of samples, we create an extended dataset by extracting
256 × 256 pixel subwindows from the original images such that the Pit Patterns are clearly
distinctive and the subwindows contain a minimum number of specular reflections (see Fig.
4.11). This resembles the clinical methodology during colonoscopy, since the gastroenterologist
will typically look at more than one region of an image. Finally, the extended dataset contains
627 HMCC images distributed according to column #(extended) in Table 4.2.

In this thesis, we differ to the originally published works in one particular point. Up to now,
the medical presentation of the problem was considered from a purely classification oriented
point of view. In such a setup, it does not matter which image is selected as the one to predict
the class of an unknown image. The results, however, only convey an impression of how well
an approach captures image information relevant for discrimination. The classification rates are
less meaningful from a medical point of view, though. This becomes obvious when we consider
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Pit Pattern # #(extended) Histology #

I 36 114 Normal 36

II 26 64 Hyperplasia 26

III-S 12 18
serrated Adenoma 4
tubular Adenoma 8

III-L 44 119
tubular Adenoma 43

tibulovillous Adenoma 1

IV
120 232 tibulovillous Adenoma 115

Adenoma 2
tubular Adenoma 3

V
31 80 Lymphoma 6

Carcinoma 6
Adenocarcinoma 19

∑
269 627 269

Table 4.2: Pit Patterns with corresponding histopathological diagnosis. The second column, i.e. #, lists
the number of original images, while the third column, i.e. # (extended), lists the number of images in the
extended dataset. The last two columns list the histologies and the corresponding occurrences.

specular reflection

Figure 4.11: Extraction of 256 × 256 pixel subwindows (black squares) from the original HMCC images
with the objective to increase the dataset. Specular reflections in the first and third image are marked red.

our dataset extension technique and the fact that there is no restriction on the type of nearest
neighbor simultaneously. In fact, during the LOOCV process, it is possible that the nearest
neighbor stems from the same parent as the unknown image. In case we are only interested to
find images with similar visual content, this case does not pose a serious problem. Actually, the
evaluation of texture retrieval systems works in the same way (see Section 3.3.2). Nevertheless,
we can construct a clinically more relevant evaluation strategy by imposing a constraint on
the type of nearest neighbor. We say, that images are only admissible as nearest neighbors in
case they do not stem from the same parent as the unknown image. We refer to this setup as
the constrained NN setup, whereas the setup in the original works will be referred to as the
unconstrained NN setup. To visualize the difference, both types are illustrated in Fig. 4.12.
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Constrained Nearest Neighbor

Unconstrained Nearest Neighbor

unknown Image

Figure 4.12: Illustration of the constrained and unconstrained nearest neighbor principle. In the un-
constrained case, the nearest neighbor is allowed to stem from the same parent as the unknown image,
whereas in the constrained case this is prohibited.

4.5.2 Parameter Configurations

In order to make our results reproducible, we have to define the parameter configurations for
the approaches. We first report the common parameters and then discuss the specific parameter
settings. Regarding the choice of colorspace, we perform experiments using the RGB, HSV,
YBR and YIQ colorspace. The conversions based on the RGB model are accomplished using
the colorspace conversion routines of MATLAB. For all wavelet transform variants (including
Gabor wavelets) the decomposition depth is fixed to J = 3 levels and no image preprocessing
steps are conducted. The Gabor wavelet settings (i.e. filter configurations) are listed in Section
3.3.2.

Regarding the distribution feature approach of Section 4.2.1, color image processing is im-
plemented by means of feature vector concatenation. In [64], our experiments showed that
feature vector concatenation leads to competitive classification results compared to other, more
advanced, combination strategies. Further, we use moment and ML estimates for the Gamma
and Weibull parameters. This is a reasonable choice, since it allows to assess whether the es-
timation methods have an impact on the classification results. This is similar to the retrieval
scenario of Chapter 3, where we could show that the choice of parameter estimation method
did not have any effect at all.

In case of the CWCC features of Section 4.2.2, we have several parameters which can be ad-
justed. Regarding the quantization levels Q, we decided to conduct experiments using Q = 32
and Q = 64 in order to keep the computational effort at a reasonable level. We strongly believe
that this is a reasonable setting, since Karakanis et al. [79] reported no gain in classification rates
using a higher number of quantization levels. The displacement vectors for the computation of
the cross co-occurrence matrices are set to d = [0 0] (zero-displacement), d = [−1 1], d = [−1 0]
and d = [−1 − 1]. We do not consider displacements that are farther away then one coefficient.
In fact, we presume that a zero-displacement vector which corresponds to a multidimensional
coefficient histogram will outperform any other displacement setting.

The WCS approach of Van de Wouwer et al. [35] and the Color-Eigen Subband (CES) ap-
proach of Section 4.2.3 do not have any remaining free parameters.

4.5.3 Assessing Statistically Significant Differences

In any reasonable comparative study on classification performance, we face situations where
classification rates between two approaches seem very similar and do not allow to make any
statements whether one approach performs better than the other. To evaluate whether the class
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assignments of two approaches show statistically significant differences, we employ a McNe-
mar test [46]. Besides the 5x2 cross-validation test, this is one of the most popular and recom-
mended [37] tests for our purpose. The test statistic is based on counting the number of samples
where approach A assigns the right class label and approach B fails (denoted by n10) and vice
versa (denoted by n01). Based on these counts, the test statistic is defined as

T =
(|n10 − n01| − 1)2

n10 + n01
. (4.10)

In case the null-hypothesis of no statistically significant difference is true, T follows as Chi-
Square distribution with one degree of freedom, i.e. T ∼ χ21. Hence, given a fixed significance
level α, we decide against the null-hypothesis if T > F−1

χ2
1
(1 − α), i.e. when T is larger than the

(1−α) quantile of the Chi-Square distribution with one degree of freedom. For example, given
α = 0.05, we decide against the null-hypothesis if T > 3.84. Consequently, we can also say that
there is enough evidence against the hypothesis of no significant differences.

Another important point in the context of evaluating differences between classifiers in our
context, is the issue of multiple comparisons. We perform multiple pairwise comparisons in
two variants. In order to assess whether a certain parameter configuration of an approach leads
to better LOOCV accuracy than other configurations, we select the best (i.e. the one with the
highest LOOCV accuracy) configuration and compare against the results obtained with all other
configurations. Hence, we consider a LOOCV run with one particular parameter configuration
as a separate experiment. This is in accordance with the guidelines of Salzberg [157], where
the author suggests that different parameter settings should be considered as a special case
of repetitive tuning. The second variant of the multiple comparisons scenario occurs when we
compare several distinct approaches to each other. In order to establish a reasonable ranking,
we need to know if the results of two approaches are significantly different. As Salzberg [157]
points out, such experimental settings require a correction of the significance level α of each
test. To highlight the problem, lets consider the case wherewe performn pairwise comparisons.
The chance of identifying a statistically significant result is 1− (1−α)n. It is straightforward to
check that it only requires n = 45 comparisons in order to reach a probability > 90% of making
a false discovery (given independent experiments). The classic strategy to control the so called
Familywise Error Rate (FWER) (i.e. the probability of making one or more Type I errors) is to
use the Bonferroni correction, i.e. α is corrected to α̂ = α/n, or a variant of the Bonferroni
method known as the Šidàk correction (see [157]). For our experiments, we implement the
latter method which corrects the significance level α to α̂ = 1 − (1 − α)

1/n. For the example of
α = 0.05 and n = 45 we obtain α̂ = 0.0011. Although this correction is based on the assumption
of independent tests – which might be violated in a practical scenario – it is still a reasonable
strategy to reduce the chance of making false conclusions. A second, alternative strategy to cope
with the problem of multiple comparisons is to control the False Discovery Rate (FDR) instead of
the FWER. The general difference to the aforementioned approach of using Bonferroni or Šidàk
correction is, that the FDR focuses on the concept of discoveries, i.e. a statistically significant
experiment. The FDR is designed to control the rate of false discoveries which is a more natural
view of the problem in many situations. In this work, we implement the FDR control algorithm
proposed by Benjamini & Hochberg [7]. Formally, given a set of n hypotheses with associated
p-values p1, . . . ,pn, we first sort the p-values to get p(1) 6 p(2) 6 · · · 6 p(n) and then determine

k̂ = max{k : p(n) 6 α · k/n}. (4.11)
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Next, given that k̂ exists, we reject the hypotheses corresponding to p(1), . . . ,p(k̂). Otherwise,
no hypothesis is rejected at all. In the following, we refer to this procedure as the Benjamini-
Hochberg procedure to control the FDR. Although, originally intended in situations where the
hypotheses are independent, Benjamini & Yekutieli [8] show that in case the subset of test
statistics corresponding to true null-hypothesis are positively dependent, then the Benjamini-
Hochberg procedure still controls the FDR at a level less than or equal to the desired level α.
For our experiments, we make the assumption that the required condition can be met in case of
our test statistics. When providing significance results, we list the McNemar test outcome for
(i) controlling the FWER by means of the Šidàk correction and (ii) controlling the FDR bymeans
of the Benjamini-Hochberg procedure.

4.5.4 Results

As a starting point for our results section, we take a closer look at the three particular feature
extraction approaches we discussed in the context of discriminant classifiers, see Section 4.2.
We indent to identify the parameter configurations which lead to the top LOOCV rates and
then discuss whether we can claim superiority w.r.t. to the other configurations by means of
searching for statistically significant differences.

First, we consider the CWCC features since this approach has the largest number of free
parameters. The LOOCV accuracies as well as the detailed classifier performance measures
of sensitivity/specificity as well as positive/negative predictive value (abbreviated by PPV
and NPV, resp.) are listed in Table 4.3. We report, that the parameter configuration of ∆ =

(DTCWT,RGB,d = [0 0],Q = 32,Correlation) leads to the highest LOOCV accuracy of 89.63%
in the two-class case. In case of the more fine grain discrimination of the three-class problem,
the parameter configuration (SWT,YIQ,d = [0 0],Q = 32,Correlation) leads to the top rate of
84.05%.

Problem Accuracy Sensitivity Specificity PPV NPV not sig.? (FWER/FDR)

2-class 89.63 84.83 91.54 79.89 93.84 22.11/11.6
3-class 84.05 - - - - 15.8/9.5

Table 4.3: Top LOOCV rates for the CWCC approach.

As we can see, specificity and the NPV are remarkably higher than the sensitivity and the
PPV. This signifies that neoplastic disease can be diagnosed more reliably. Next, we fix the top
parameter configurations and perform pairwise comparisons of the top results to the results
obtained by the remaining parameter configurations. In Fig. 4.13a, we plot the sorted values
of the McNemar test statistic T against the number of pairwise comparisons. The bold red-line
signifies the threshold (using FWER correction) above which we can claim statistically signifi-
cant differences. Accordingly, Fig. 4.13d shows a plot of the sorted p-values against the number
of pairwise comparisons when relying on the Bejamini-Hochberg correction. The shaded area
signifies the region above which there is evidence against the null-hypothesis of the McNemar
test. The percentage of non-significant differences among all pairwise comparisons is listed
in the last column of Table 4.3. When tracing back the parameter configurations where there
is no evidence against the null-hypothesis, we observe the following situation: in almost any
case (no matter if we consider the two- or three-class problem) the Haralick feature Correlation
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Figure 4.13: Illustration of the McNemar test outcomes for pairwise comparisons between the top param-
eter configuration of each approach and the remaining parameter configurations. In the top row, we plot
the sorted McNemar test statistics T against the number of pairwise comparisons. The threshold (deter-
mined using FWER control) above which we have evidence against the null-hypothesis is marked by a
bold red line. In the bottom row, we plot the sorted p-values against the number of comparisons. The
region (determined using FDR control) of non-significant differences is marked gray.

and zero-displacement d = 0 are fix elements in the configuration. Only the colorspace and
wavelet transform actually change. Practically, this allows to draw the conclusion that the Cor-
relation feature together with a zero-displacement vector are the key elements to achieve good
classification (and hence good prediction) results when using the CWCC approach.

We next turn to the results of the CES features. The free parameters of this approach are the
type of wavelet transform and the colorspace, hence there are twelve possible combinations.
Table 4.4 lists the top LOOCV results for both classification problems. In either case, the high-
est LOOCV accuracy, i.e. 93.14% and 88.84%, is obtained using the parameter configuration
∆ = (DTCWT,YBR). When relying on control of the FWER, this configuration leads to signifi-
cantly better classification results than any other configuration in≈ 19% and≈ 27% of all cases.
The Benjamini-Hochberg procedure for FDR control is less strict, with ≈ 18% of non-significant
results for both problems. Again, identifying the pairwise comparisons where there is no ev-
idence against the null-hypothesis, reveals that switching the colorspace from YBR to YIQ or
RGB does not lead to a significant change in the classification results compared to the top pa-
rameter configuration. Hence, the key parameter element of the CES approach is the choice of
wavelet transform, i.e. the DTCWT.
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Problem Accuracy Sensitivity Specificity PPV NPV not sig.? (FWER/FDR)

2-class 93.14 86.10 96.14 90.45 94.21 18.8/18.2
3-class 88.84 - - - - 27.27/18.2

Table 4.4: Top LOOCV rates for the CES approach.

Finally, we take a look at the distribution features of Section 4.2.1. We include the mean &
standard deviation of the subband coefficient magnitudes as features [102, 64] (denoted as En-
ergy features). Since we can either use moment or ML estimation for the Gamma and Weibull
distribution parameters, we have 20 possible parameter configurations. For both classification
problems, the configuration of ∆ = (YBR,Energy) leads to the highest LOOCV accuracies of
93.30% and 89.47%, resp., see Table 4.5. Similar to Tables 4.3 and 4.4, the high rates for speci-
ficity and NPV indicate better prediction performance of neoplastic disease. In the two-class
case, there is almost no significant difference in the results obtained by different parameter con-
figurations. When we rely on FWER correction, this is also true for the three-class problem.
However, in case of the FDR control approach, we report only ≈ 16% of non-significant differ-
ences for the three-class problem. The detailed results reveal that the Energy features generally
lead to higher discrimination rates, no matter which colorspace we choose. We attribute this
effect to the bad choice of similarity measure (i.e. the Euclidean distance) for the distribution
features. As we will later see, the refinement of the similarity measure in favor of the KL diver-
gence considerably improves the results.

Problem Accuracy Sensitivity Specificity PPV NPV not sig.? (FWER/FDR)

2-class 93.30 91.01 94.21 86.17 96.36 78.95/73.68
3-class 89.47 − − − − 57.89/15.8

Table 4.5: Top LOOCV rates for the distribution features approach.

After the fine-grain analysis of the feature extraction approaches, we go on to a comparative
study of the CWCC, CES and distribution features (using the top parameter configurations) to
the Gaborwavelet features [117], color histograms [175] and theWCS features [35]. For the three
reference approaches, we do not perform a detailed study whether there are statistically signif-
icant differences in the results obtained by different parameter configurations. We simply pick
out the best parameter configuration in each case. Tables 4.6 and 4.7 summarize the achieved
LOOCV accuracies for the two- and three-class problem. In Table 4.7, we additionally list the
classifier performance measures of sensitivity, specificity, PPV and NPV for the discrimination
of non-invasive vs. invasive disease. Accordingly, high values for specificity and NPV indicate
good prediction performance for invasive neoplastic disease.

From Tables 4.6 and 4.7, we first notice that there is a considerable difference in LOOCV
accuracies between the top rates of 93.30%/89.47%and the worst rates of 84.34%/78.31%which
is equivalent to ≈ 60 more misclassified images. Further, specificity is higher than sensitivity in
the two-class case which suggests that the diagnostic accuracy of neoplastic disease is generally
higher than for non-neoplastic disease (at least for our dataset). In case of the discrimination be-
tween non-invasive and invasive neoplasia, the situation is reversed, see Table 4.7, with higher
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Approach Accuracy Sensitivity Specificity PPV NPV

Distribution Features 93.30 91.01 94.21 86.17 96.36
CES 93.14 90.45 94.21 86.10 96.14
Van de Wouwer et al., 1997 90.75 89.89 91.09 80.00 95.78
Manjunath & Ma, 1996 90.27 84.27 92.65 81.97 93.69
CWCC 89.63 84.83 91.54 79.89 93.84
Swain & Ballard, 1991 84.37 74.16 88.42 71.74 89.62

Table 4.6: Comparison of the LOOCV rates for the 2-class problem.

Approach Total
Non-Invasive vs. Invasive

Accuracy Sensitivity Specificity PPV NPV

Distribution Features 89.47 94.33 96.66 86.17 96.07 88.04
CES 88.84 93.62 96.08 84.62 95.80 85.56
Van de Wouwer et al., 1997 85.96 92.67 95.27 83.70 95.27 83.70
CWCC 84.05 92.42 96.57 77.27 93.94 86.08
Manjunath & Ma, 1996 81.18 86.30 92.64 63.33 90.15 70.37
Swain & Ballard, 1991 78.31 90.43 96.09 71.11 91.90 84.21

Table 4.7: Comparison of the LOOCV rates for the 3-class problem and the subproblem of discriminating
non-invasive vs. invasive neoplasia.

values for sensitivity than for specificity. Consequently, the diagnostic accuracy of non-invasive
neoplastic disease is better.

An interesting question which remains to be answered is, whether the ranking presented in
Tables 4.6 and 4.7 is actually reliable. In particular, we require that there has to be a statistically
significant difference in the classification results between two approaches in order to assign
different ranks. Table 4.8 lists the McNemar test statistic values for all pairwise comparisons
and highlights those caseswhere theMcNemar test shows evidence against the null-hypothesis.
These significant differences are either marked gray (when relying on FWER control) and/or
by a ’∗’ (when relying on FDR control). The results indicate that taking the ranking as it is
can be elusive, since the pairwise comparisons of the top four approaches do not show any
evidence against the null-hypothesis at all. We attribute this effect to the significance level
correction. Without this correction, the threshold of the McNemar test would be lowered to
3.84 for example.

As a final part of this section, we present the classification results of the generative model
based approaches from CBIR. The LOOCV rates for both classification problems are listed in
Tables 4.9 and 4.10. We report that the top parameter configuration remains the same for all
approaches on both problems. The copula retrieval strategy exhibits the highest rates, using
the parameter configuration of a Gaussian copula, Gamma margins and the RGB colorspace.
The approach of Kwitt & Uhl performs at a competitive level using the YIQ colorspace and
the Gamma distribution. This particularly emphasizes the point of using a suitable similarity
measure. In comparison to the discriminant classifier strategy of using the distribution param-
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A B C D E F

A Distribution Features -
B CES 0 -
C Van de Wouwer et al, 1997. 4.50 2.92 -
D Manjunath & Ma, 1996 4.10 3.70 0.05 -
E CWCC 6.68∗ 5.63∗ 0.31 0.04 -
F Swain & Ballard, 1991 26.07∗ 24.92∗ 11.35∗ 10.36∗ 8.64∗ -

A Distribution Features -
B CES 0.23 -
C Van de Wouwer et al, 1997. 6.30∗ 3.28 -
D CWCC 8.38∗ 8.24∗ 1.06 -
E Manjunath & Ma, 1996 19.41∗ 16.99∗ 6.37 2.18 -
F Swain & Ballard, 1991 30.92∗ 28.54∗ 12.99∗ 7.65∗ 1.70 -

Table 4.8: McNemar test statistic values T for pairwise comparisons of the classification results for the
2-class (top) and 3-class (bottom) problem in the context of the discriminant classifier based approaches.
Test results, showing evidence against the null-hypothesis are marked shaded gray (when controlling the
FWER) or by a ’∗’ (when controlling the FDR).

eters in conjunction with the Euclidean distance, the CBIR strategy relies on the well-founded
KL divergence and exhibits considerably better LOOCV rates. Regarding the approaches of
Vasconcelos & Lippman [186] and Verdoolage et al. [188], we identify the YBR and RGB col-
orspace as the most suitable configurations, respectively. A follow-up study on whether there
are significant differences in the classification results, however, reveals that there is no evidence
against the null-hypothesis for the majority of pairwise comparisons in the two-class case, see
Table 4.11. In fact, only the differences between the first and fourth approach in Table 4.9 and
4.10 are significant. Based on the high classification rates we infer that only a few images are
misclassified. Consequently, the terms n10 and n01 in the computation of the McNemar test
statistic are rather small. This leads to low values of T which eventually explains the results
of Table 4.11. In less technical terms, there is very little space for one approach to produce a
notably different classification result compared to the other approaches. The final comparison
we make is to compare the classification results achieved by the discriminant classifier based
approaches to the top approach of the generative models, see Table 4.12. As we can see, all
pairwise comparisons show evidence against the null-hypothesis of the McNemar test. Hence,
it is safe to claim that the copula approach is at least superior to any of the approaches listed in
Tables 4.6 and 4.7.

Approach Accuracy Sensitivity Specificity PPV NPV

Copula 96.65 94.94 97.33 93.37 97.98
Kwitt & Uhl, 2008 95.06 93.26 95.77 89.73 97.29
Vasconcelos & Lippman, 2000 94.74 84.27 98.89 96.77 94.07
Verdoolaege et al., 2008 92.98 91.01 93.76 85.26 96.34

Table 4.9: Comparison of the LOOCV rates for the 2-class problem.
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Approach Total
Non-Invasive vs. Invasive

Accuracy Sensitivity Specificity PPV NPV

Copula 93.46 95.42 97.95 86.32 96.26 92.13
Vasconcelos & Lippman, 2000 92.50 97.28 98.26 93.81 98.26 93.81
Kwitt & Uhl, 2008 91.07 94.19 95.55 89.25 96.99 84.69
Verdoolaege et al., 2008 88.52 93.35 96.36 82.42 95.21 86.21

Table 4.10: Comparison of the LOOCV rates for the 3-class problem and the subproblem of discriminating
non-invasive vs. invasive neoplasia.

4.6 Discussion

Summarizing the results of this chapter, we make the following remarks: as with every discrim-
inant classifier approach, the discriminative power of the feature set is the crucial factor for clas-
sification performance. The most advanced classifiers can only find correct decision boundaries
if the feature set captures the information that is essential to discriminate the classes. Further,
discriminant classifiers usually depend on a user-supplied measure of similarity between two
feature vectors. Finding a reasonable similarity measure is not a trivial task in many situations,
since feature vectors tend to be composed of many different kinds of features. Although the
generic Euclidean distance works well in practice, it lacks a reasonable interpretation of the re-
sulting value. Actually, we have seen that using the Euclidean distance for theWeibull/Gamma
distribution features is suboptimal and performance can be considerably improved by a theo-
retically well-founded dissimilarity measure such as the KL divergence. As a matter of fact, the
various degrees of freedomwe have to cope with in a discriminant classifier scenario often lead
to trial and error strategies in finding the most suitable configuration of feature set, similarity
measure and classifier. In a generative model based approach, however, the degrees of free-
dom are more restricted in a certain sense. Basically, only the choice of feature transformation

A B C D

A Copula -
B Kwitt & Uhl, 2008 2.02 -
C Vasconcelos & Lippman, 2000 2.88 0.01 -
D Verdoolaege et al., 2008 11.25∗ 3.34 1.58 -

A Copula -
B Vasconcelos & Lippman, 2000 0.39 -
C Kwitt & Uhl, 2008 3.69 0.75 -
D Verdoolaege et al., 2008 15.25∗ 6.06∗ 3.51 -

Table 4.11: McNemar test statistic values T for pairwise comparisons of the classification results for the
2-class (top) and 3-class (bottom) problem in the context of the generative model based approaches. Test
results, showing evidence against the null-hypothesis are marked gray (when controlling the FWER) or
by a ’∗’ (when controlling the FDR).
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Approach 2-class 3-class

Copula − −

Distribution Features 9.30∗ 10.10∗

CES 8.48∗ 11.36∗

Van de Wouwer et al, 1997 24.45∗ 28.21∗

CWCC 26.41∗ 35.41∗

Manjunath & Ma, 1996 25.35∗ 49.36∗

Swain & Ballard, 1991 53.98∗ 63.56∗

Table 4.12: McNemar test statistic values for a pairwise comparison of the copula approach to all discrim-
inant classifier approaches. Test results, showing evidence against the null-hypothesis are marked shaded
gray (when controlling the FWER) or by a ’∗’ (when controlling the FDR).

and feature representation is up to the user. Once we have a suitable transformation and an
analytically tractable feature representation, we can at least follow the guidelines for selecting
the most similar image by relying on the Bayesian formulation of CBIR. Measuring similarity
in terms of the maximum likelihood or the minimal KL divergence has a reasonable interpre-
tation in this framework. Regarding a recommendation which strategy to choose in a clinical
application, it is hard to make a definitive statement. Although we tend to argue in favor of the
generative model based strategy, we have also observed that significant differences in the clas-
sification results are rare. It is possible that on another dataset, the margin between the copula
approach and the discriminant classifier approaches shrinks and some significant differences
vanish. But this is a general issue of any classification problem when there is a lack of available
data to perform a large scale study. Consequently, we argue that the conducted experiments
should be considered as a prospective evaluation to select a collection of suitable approaches
for a final fusion stage, where various predictions of the histology are fused together to a final
decision. This fusion might be based on weighting the different predictions by their reliability
for instance. However, this is topic of future research and beyond the scope of this thesis.



Chapter 5

Watermarking

In this chapter, we address the research topic of image watermarking, a branch of multimedia
security where suitable statistical models of wavelet coefficients prove to be highly beneficial.
Watermarking has been proposed as a technology to ensure copyright protection by embedding
an imperceptible, yet detectable signal in digital multimedia content such as images or video.
According to Barni et al. [3], there is a strong resemblance between a watermarking system and
a communication system. Embedding watermark information into some host (e.g. an image)
asset resembles a transmission process. Any processing steps (e.g. compression, resizing) along
the path of the watermarked asset to the receiver can be modeled as a communication channel.
Eventually, recovery of the embeddedwatermark signal corresponds to the receiving side in the
communication scenario. In order to identify and delineate the work of this chapter in the wide
field of image watermarking, Fig. 5.1 shows a schematic overview of the watermarking system
configuration we rely on. As we can see, our focus is on the data recovery side and in particular
on blind recovery of the watermark signal, i.e. when detection is performed without reference
to the unwatermarked host asset A. Further, our study is limited to the case of detectable wa-
termarks (signified by the yes/no decision in Fig. 5.1) in contrast to readable watermarks. In
our configuration, the host interferes with the watermark signal. Hence, informed watermark
embedding and modeling the host signal are crucial for detection performance [116, 25]. Trans-
form domains – such as the DCT or the DWT domain – facilitate modeling human perception
and permit selection of significant signal components for watermark embedding. We follow
the embedding strategy of additive embedding throughout this chapter, a technique which has
spawned many research articles in the last years. A plethora of different detectors has been pro-
posed which all basically improve upon the particular statistical model for the host transform
coefficients [69, 139, 17, 125, 12].

The chapter is structured as follows: we start-off with a brief recapitulation of watermarking
as a statistical signal detection problem in Section 5.1. In Section 5.2, we introduce a novel
watermark detector based on the Cauchy distribution for DWT coefficients. Section 5.3 then
introduces another novel detector, specifically tailored for color image watermarking. For both
detectors, we conduct an extensive experimental study on the UCID image database [159] and
compare against a set of well-known watermarking approaches from literature. Regarding the
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Figure 5.1: Configuration of the watermarking system we use in this chapter (adapted form [3]).

contribution of this chapter, we highlight that major parts of the content recently appeared in
the following publications:

[94] R. Kwitt, P. Meerwald, and A. Uhl. A lightweight Rao-Cauchy detector for additive water-
marking in the DWT-domain. In Proceedings of the ACM Multimedia and Security Workshop

(MMSEC ’08), pages 33–41, Oxford, UK, September 2008. ACM

[96] R. Kwitt, P. Meerwald, and A. Uhl. Color-image watermarking using multivariate power-
exponential distribution. In Proceedings of the IEEE International Conference on Image Pro-

cessing (ICIP ’09), pages 4245–4248, Cairo, Egypt, November 2009. IEEE

5.1 Watermarking as a Signal Detection Problem

Regarding our description of the theoretical foundations, we closely adhere to the textbooks of
Kay [83], Barni et al. [3] and Cox et al. [28]. The objective of this recapitulation is, to work out
the prerequisites to deploy different signal detection strategies for additive spread-spectrum
watermarking. We start from classic Neyman-Pearson detection and then successively loosen
the requirements on the specification of the host signal noise model. This leads to the idea of
Generalized Likelihood Ratio testing (GLRT) and finally, to an asymptotically equivalent for-
mulation of the GLRT known as the Rao hypothesis test. We follow the convention that the
transform coefficients of an arbitrary DWT detail subband are referred to as the host transform
coefficients x1, . . . , xN. The watermark signalw1, . . . ,wN is a realization ofN i.i.d. copies of a ran-
dom variableW. For the purpose of additive spread-spectrum watermarking it is convenient
to assume thatW follows a discrete uniform distribution with equiprobable values in {+1,−1},
hence, the corresponding p.m.f. ofW is given by

pW(x) =






0.5, if x = +1

0.5, if x = −1

0, else.

(5.1)



Chapter 5. Watermarking 94

The watermark signal is generated by a pseudo-random number generator (PRNG) seeded by
some secret key K. The rule for additive embedding can be formulated as

∀i : yi = xi + αwi (5.2)

where α > 0 denotes the embedding strength and the yi denote the watermarked transform
coefficients. The detection problem can be formulated as the detection of a deterministic sig-
nal (i.e. the watermark) of unknown amplitude in incompletely specified noise. In terms of
hypothesis testing, we can state the null- (H0) and alternative hypothesis (H1) as

H0 : yi = xi (not/other watermarked), (5.3)

H1 : yi = xi + αwi (watermarked) (5.4)

which is equivalent to the (two-sided) parameter test

H0 : α = 0, (5.5)

H1 : α 6= 0. (5.6)

In the rare case that the p.d.f.s under both hypotheses can be completely specified, we can easily
construct a Neyman-Pearson (NP) detector which is optimal in the sense that it maximizes the
probability of detection Pd for a fixed probability of false-alarm Pf. Given that p(x;ΘH0) and
p(x;ΘH1) denote the p.d.f.s under H0 and H1, then the Neyman-Pearson theorem states that
the optimal detector decides in favor of H1 if

TL(x) =
p(x;ΘH1)

p(x;ΘH0)
> γ. (5.7)

The terms ΘH0 and ΘH1 denote the fully-specified parameter vector(s) of the noise model un-
der H0 and H1, respectively. Eq. (5.7) is known as the Likelihood-Ratio Test (LRT) with threshold
γ [83]. In case we can deduce the distribution of the detection statistic TL(x) under H0, it is
straightforward to determine a suitable threshold for a fixed probability of false-alarm Pf as

γ = inf
x

{(1 − F(x)) > Pf} (5.8)

where F(x) denotes the distribution function of TL(x) under H0. For example, in case of a stan-
dard Normal distribution, i.e. TL|H0 ∼ N(0, 1), the threshold can be expressed as

γ = Q−1(Pf) (5.9)

where Q−1 denotes the inverse Q-function to determine right-tail probabilities of the standard
Normal distribution.

In order to constrain the probability of false-alarm, the NP test requires that the distribu-
tion of the detection statistic under H0 does not depend on any unknown parameters. In cases
where the noise model p.d.f.s under H0 and H1 cannot be fully specified, this requirement is
usually violated. In fact, the embedding strength α as well as the distribution parameters of the
assumed noise model might be unknown to the detector. Hence, in practice it is more realis-
tic that we have to estimate the unknown parameters from the received signal. Nevertheless,
a special case occurs when we assume that the host transform coefficients follow a Gaussian
distribution with parameters µ and σ. In that case, it is possible to design a NP test as if all
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parameters were known and obtain a LRT detection statistic which does not depend on the un-
known parameters. This detector is commonly referred to as the linear-correlation (LC) detector
[83]. In the general case though, it is not feasible to get rid of the unknown parameters.

When we cannot completely specify the noise distribution under both hypotheses, we have
to resort to composite hypothesis testing approaches. A common strategy to tackle the detection
problem is to use a Generalized Likelihood Ratio Test (GLRT). This test replaces the unknown pa-
rameters by the corresponding ML estimates conditioned on either H0 or H1. In the context of
watermarking, this practically means that we have to estimate the embedding strength α from
the received signal. For many noise models, however, estimation of α turns out to have no ex-
plicit solution. In addition, the noise model parameters under H1 depend on α which further
complicates the estimation task. In the terminology of composite hypothesis testing, the noise
model parameters are referred to as the nuisance parameters. Although, the focus is on testing
α = 0 vs. α 6= 0, the parameters affect the detection statistics under both hypotheses as well.
We follow the convention, that θs,H0 and θs,H1 denote the nuisance parameters under the null-
and alternative hypothesis, respectively. The GLRT decides in favor of H1 if

TG(x) =
p(x; α̂, θ̂s,H1)

p(x; 0, θ̂s,H0)
> γ (5.10)

since α = 0 in case of H0. It is well-known, that the detection statistic 2 log TG(x) asymptotically
(i.e. N→ ∞) follows

2 log TG(x)
a
∼

{
χ21, under H0

χ21(λ), under H1
(5.11)

where χ21 denotes a Chi-Square distribution with one degree of freedom and χ21(λ) denotes a
non-central Chi-Square distribution with one degree of freedom and non-centrality parameter
λ, given by [82]

λ = α2[Iαα(0,θs) − Iαθs
(0,θs)I

−1
θsθs

(0,θs)Iθsα(0,θs)]. (5.12)

Two examples of the detection statistic p.d.f.s under H0 and H1 are shown in Fig. 5.2. By taking
a closer look at Eq. (5.11), we see that the GLRT leads to a Constant False-Alarm Rate (CFAR)
detector since the detection statistic distribution under H0 does not depend on any parameters
at all. Hence, no matter which noise model we choose, the threshold needs to be calculated
just one time. The terms Iαα, Iαθs

, Iθsα and Iθsθs
in Eq. (5.12) denote partitions of the Fisher

information matrix, given by:

Iαα = E

[

∂ logp
∂α

∂ logp
∂α

]

1× 1 (5.13)

Iαθs
= E

[

∂ logp
∂α

∂ logp
∂θs

]

1× s (5.14)

Iθsα = E

[

∂ logp
∂θs

∂ logp
∂α

]

s× 1 (5.15)

Iθsθs
= E

[

∂ logp
∂θs

∂ logp
∂θs

]

s× s (5.16)

To show a practical example of how to derive a CFAR detector relying on the GLRT, we
assume that the DWT detail subband coefficients can be modeled by a Gaussian distribution
with zero mean and variance σ2, i.e. X ∼ N(0,σ2). The example is similar to the one presented
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Figure 5.2: Illustration of the detection statistic distributions of the GLRT under H0 and H1 as well as the
probability of false-alarm Pf. The threshold is calculated for Pf ≈ 0.3.

in [82]. First, we need to determine the ML estimates of α and σ2 under both hypotheses. To
obtain the restricted MLE of α and σ2, i.e. the ML estimates under H1, we formulate the log-
likelihood function as

L(α,σ;y1, . . . ,yN) = log
(

1
(2πσ2)N/2

)

−
1
2σ2

N∑

i=1

(yi − αwi)
2. (5.17)

Taking the derivative w.r.t. α and setting the resulting equation to zero gives

α̂ =
1
N

N∑

i=1

yiwi (5.18)

as the MLE of α. The restricted MLE σ̂21 is obtained by taking the partial derivative of Eq. (5.17)
w.r.t. σ and setting the corresponding term to zero. This gives

σ̂21 =
1
N

N∑

i=1

(yi − α̂wi)
2 (5.19)

which, in combination with Eq. (5.18), finally allows to write the host signal noise p.d.f. under
H1 as

p(x; α̂, σ̂21) =
1

2πσ̂21
exp

(

−
N

2

)

. (5.20)

Under the null-hypothesis, we know that α = 0 and the MLE of σ2 – denoted as the unrestricted
MLE σ̂20 – is the sample variance of y1, . . . ,yN. Eventually, the detection statistic of the GLRT
for the CFAR detector is

2 log TG(x) = N log
σ̂20
σ̂21

. (5.21)

This detector is only asymptotically equivalent to the LC detector. However, we highlight that
the threshold γ can be set to a predefined value and does not have be determined for each new
signal. Since the number of DWT coefficients N is usually quite large in case of images, we
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don’t have to worry about signal length issues related to the asymptotic performance of the
GLRT. Letting Q−1

χ2
1
denote the Q-function to express right-tail probabilities of the Chi-Square

distribution with one degree of freedom, γ can be set according to

γ = Q−1
χ2
1
(Pf) (5.22)

where Pf denotes the desired probability of false-alarm, e.g. Pf = 10−3. A presumably more
convenient way to express γ is to rely on the relation that right-tail probabilities of the χ21 distri-
bution can also be expressed by means of the Q-function to compute right-tail probabilities of
the Gaussian distribution, i.e. Qχ2

1
(x) = 2Q(

√
x). Hence,

γ =

[

Q−1
(

Pf

2

)]2

(5.23)

which is usually easier to handle due to existing implementations of the Gaussian Q-function.
Fig. 5.2 illustrates a threshold (dashed line) of γ = 1 for Pf ≈ 0.32. In order to determine the
non-centrality parameter λ, we can rely on a theorem of Kay [82] which considers the special
case of p(x;α,θs) = −p(x;α,θs). The theorem states that the symmetry of the noise model
leads to Iαθs

= 0 which reduces the expression in Eq. (5.12) to

λ = α2[Iαα(0,θs)]. (5.24)

In our example of a Gaussian host signal, we thus have λ = α2[Iαα(0,σ2)]. The corresponding
partition Iαα(α,σ2) of the Fisher information matrix can be derived from (see [82])

Iαα(α,σ2)] = E

[

(

∂ logp(xi − αwi;α,σ2

∂α

)2
]

=

N∑

i=1

w2
i

∫∞

−∞

[

p ′(n;α,σ2)
p(n;α,σ2)

]2

p(n;α,σ2)dn

(5.25)
wherewe have setni = xi−αwi and p ′(n;α,σ2) denotes the first partial derivative of p(n;α,σ2)
w.r.t. n. After some calculus, we obtain

Iαα(0,σ2) =

N∑

i=1

w2
i

1
σ2

=
N

σ2
(5.26)

and the non-centrality parameter λ takes the form

λ = α2 N

σ2
. (5.27)

An alternative approach to tackle the problem of composite hypothesis testing is to rely on
the asymptotic equivalence of the GLRT and the Rao hypothesis test [153]. The compelling
advantage of the Rao hypothesis test is that it does not require to compute ML estimates for α
and θs under H1. Only the ML estimates under H0 are required for detection. Since we know
that α = 0 in case of H0, the Rao test is particularly useful in situations where the embedding
side does not want to inform the detector about the choice of embedding strength. As pointed
out by Barni et al. [3], this is an important degree of freedom, since it allows the embedding
side to adjust the embedding strength to the signal at hand. The Rao test decides H1 in case

TR(x) =
∂ logp(x;Θ)

∂α

∣

∣

∣

∣

T

Θ=Θ̂

[

I−1(Θ̂)
]

αα

∂ logp(x;Θ)

∂α

∣

∣

∣

∣

Θ=Θ̂

> γ (5.28)
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where Θ̂ = [α̂ θ̂s,H0 ] denotes the ML estimates under H0, e.g. Θ̂ = [0 σ̂20] for our previous
problem or Θ̂ = [0 θ̂s,H0 ] for a general nuisance parameter vector. Further, the term [I(Θ)]

−1
αα is

given by

[I(Θ)]
−1
αα =

(

Iαα(Θ) − Iαθs
(Θ)I−1

θsθs
(Θ)Iθsα(Θ)

)−1
(5.29)

where the partitions of the Fisher information matrix are defined in Eqs. (5.13) to (5.16). Due to
the asymptotic equivalence to the GLRT, the Rao hypothesis test inherits the distribution of the
detection statistic, i.e. TR(x) ∼ 2 log TG(x), see Eq. (5.11). Consequently, we obtain a CFAR detec-
tor with the advantage to avoidML estimation of the embedding strengthα. In [139], Nikolaidis
et al. first exploit this test to derive a watermark detector for additive spread-spectrum water-
marks in the DWT domain, based on a Generalized Gaussian noise model. In Section 5.2, we
introduce a Rao hypothesis test conditioned on a Cauchy host signal noise model.

As a final remark of this section, we highlight that the Neyman-Pearson criterion is a quite
overused term in watermarking literature. It is customary to derive a LRT-based detector for
some noise model and refer to the Neyman-Pearson criterion for threshold selection. This how-
ever implies that we can actually constrain the probability of false-alarm which basically re-
quires that the detection statistic under H0 does not depend on any unknown parameters. Tak-
ing a closer look at popular detectors in literature, e.g. [69, 12], reveals that this is usually not
the case due to unknown noise parameters or unknown embedding strength. Given that we
assume knowledge of the embedding strength at the detector, the noise parameters are still
unknown and have to be estimated from the received signal. Consequently, the resulting detec-
tors are not NP detectors but rather estimate-and-plug detectors, as pointed out by Kay [83]. The
threshold will be biased because the watermark may be present in the received signal. Never-
theless, estimate-and-plug detectors are a reasonable choice in situations where the noise model
leads to intractable expressions for the GLRT or Rao hypothesis test.

5.1.1 Evaluation of Detector Performance & ROC curves

A critical issue with any watermarking system is how to evaluate the performance of the de-
tector. A convenient strategy is to construct Receiver Operator Characteristic (ROC) curves.
Although, we will later see that the ROC curve plots are disadvantageous when evaluating de-
tection performance on a large number of images, the general construction principle is worth
a discussion. Usually, we plot the probability of detection Pd (or miss Pm) in dependence of
the probability of false-alarm Pf. In order to infer conclusions about the detector performance
based on ROC curves, we first have to ensure that the detector retains the desired Pf. This is
an important point, since in any practical situation we expect the actual host signal noise to
deviate from the theoretical model to some extent. In case of the GLRT or Rao test for instance,
we have to check whether the detection responses under H0 in fact follow a Chi-Square distri-
bution with one degree of freedom. Other detectors, e.g. the LC detector, require to verify that
the detection statistic follows a Gaussian law. A reasonable way to perform these checks is to
skip the embedding step and to call the watermark detectorM times on unwatermaked trans-
form coefficients. This givesM detector responses, say ρ1, . . . , ρM, which we can use in a GoF
test to check if there is evidence against the null-hypothesis. In case there is no evidence, it is
safe to set Pf to the desired level. Of course we could also count the number of false detections
among theM detector responses and compare against the expected number of false detections.
However, this is computationally not feasible for small values of Pf (e.g. Pf = 10−10) which is
why we favor the former strategy. The next step is, to determine Pm (or Pd). For that purpose,
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Figure 5.3: Schematic process description of how to determine the detection responses under H0 (i.e.
ρ1, . . . , ρM), H1 (i.e. ρ ′

1, . . . , ρ
′
M) and the calculation of the detection statistic parameters µ̃0 and σ̃20 from the

received signal.

we successively embed and detectMwatermarks to obtainM responses, say ρ′1, . . . , ρ
′
M ,under

H1. We can then estimate the corresponding detection statistic parameters under H1 and finally
plot the ROC curves. In case of a GLRT for instance, we can exploit the relationship [83]

Pd = Q(Q−1(1/2Pf) −
√
λ) +Q(Q−1(1/2Pf) +

√
λ) (5.30)

to express Pd as a function of Pf and λ. The non-centrality parameter can be estimated by
remembering that given X ∼ χ21(λ), it can be shown that

√
X ∼ N(

√
λ, 1) and thus

λ̂ =

(

1
N

N∑

i=1

√

ρ′i

)2

. (5.31)

Inserting λ̂ in Eq. (5.30) gives the semi-experimentalROC curve. We use the term semi-experimental
since a fully experimental ROC curve would imply counting of the number of missed detec-
tions. The general expression to determine the semi-experimental probability of miss P̂m is

P̂m = P(T(x) < γ) = F(γ; b̂) (5.32)

where F denotes the c.d.f. of the detection statistic T under H1, parametrized by b̂. The semi-
experimental evaluation strategy is of particular relevance when it comes to measuring the
performance of a detector under attacks. Due to the vast number of possible attacks on the
watermarked image, there is nowaywe could incorporate the attack characteristics into the host
signal model in a tractable manner. As a matter of fact, evaluation of the watermark detection
performance amounts to an experimental study. The semi-experimental way allows to plot
ROC curves even for low values of Pf. A graphical visualization of the whole strategy is shown
in Figs. 5.3a and 5.3b where T denotes the transformation of an image I to a suitable transform
domain representation I ′, e.g. by a DWT. The watermarked image in the transform domain is
denoted by I ′′ and T−1 denotes the corresponding inverse transformation.

5.2 A Rao Hypothesis Test for Cauchy Host Signal Noise

One main motivation for deriving a novel watermark detector for host signal noise distributed
other than Generalized Gaussian, is the fact that ML estimation of the GGD parameters is com-
putationally expensive and requires a numerical root-finding procedure (see Chapter 3). Since
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the Cauchy distribution is a reasonable model for DWT transform coefficients and parameter
estimation can be performed efficiently, chances are high that we can derive a computationally
simple and effective watermark detector. While other approaches such as [15] aim for a reduc-
tion in watermark sequence length to enhance computational performance, we try to reduce the
computational effort per step in the detection process. We start by deriving the first part of the
detection statistic of Eq. (5.28)

[

∂ logp(x;Θ)

∂α

]2

=

[

N∑

i=1

∂ logp(yi − αwi;γ)

∂α

]2

(5.33)

with Θ = [α γ]. Inserting the p.d.f. of the Cauchy distribution leads to

N∑

i=1

∂ logp(yi − αwi;γ)

∂α

(2.4)
=

N∑

i=1

2wi(yi − αwi)

γ2
(

1 +
(yi−αwi)2

γ2

) . (5.34)

We next evaluate this expression at the ML estimate Θ̂ = [0 γ̂] and take the power of two to
obtain

[

∂ logp(x;Θ)

∂α

]2
∣

∣

∣

∣

∣

Θ=Θ̂

= 4

[

N∑

i=1

yiwi

γ̂2 + y2i

]2

. (5.35)

In the second step, we need to derive an expression for

[I(Θ)]
−1

= (Iαα(Θ))
−1 (5.36)

which is the only term that is left over from Eq. (5.29), since we know that Iαθs
= 0 in case of a

symmetric p.d.f. We modify Eq. (5.25) accordingly to obtain

Iαα(α,γ) =

N∑

i=1

w2
i

∫∞

−∞

[

p ′(n;α,γ)

p(n;α,γ)

]2

p(n;α,γ)dn =
1

2γ2

N∑

i=1

w2
i =

N

2γ2
. (5.37)

By using Eq. (5.28) and inserting the ML estimate Θ̂ = [0 γ̂] under H0, we obtain the following
expression for the detection statistic of our Rao hypothesis test conditioned on Cauchy host
signal noise

TR(y) =

[

N∑

i=1

yiwi

γ̂2 + y2i

]2
8γ̂2

N
. (5.38)

Based on Eq. (5.37) it is then straightforward to deduce the expression for the non-centrality
parameter of the detection statistic under H1 as

λ = α2Iαα(0,γ) =
Nα2

2γ2
. (5.39)

We will next test our theoretical expressions by means of artificially generated data and then
go on to an experimental evaluation of the watermark detector on real data. Our test works
as follows: we generate Cauchy distributed host signal noise samples x1, . . . , xN as realizations
of N i.i.d. copies of a random variable X ∼ C(γ), where C(γ) denotes a Cauchy distribution
with shape parameter γ. We set γ = 5, N = 105 and generate the bipolar watermark sequence
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Figure 5.4: ROC curves for different embedding strengths of additively embedded (bipolar) watermarks
in artificially generated Cauchy host signal noise samples with γ = 5,N = 10000.

wi as mentioned above. Further, we let the embedding strength α vary between 0.2 and 0.5
with a stepsize of 0.1. From Eq. (5.39) we expect λ = 8, 18, 32, 50 for this setup. The detector
responses under H0 and H1 are determined as illustrated in Figs. 5.3a and 5.3b withM = 1000.
The ROC curves are shown in Fig. 5.4. Obviously, increasing the embedding strength leads
to better detector performance. The estimated values for the non-centrality parameter λ are
8.68, 16.35, 32.47 and 50.94, resp., which conforms the validity of our derivation. For a practi-
cal watermarking scenario, however, it is not a smart choice to set the watermarking strength
arbitrarily. In additive spread-spectrum watermarking, α is usually determined based on the
Data-to-Watermark (DWR) ratio, expressed in decibel (dB). In our context, the term Data refers
to the DWT detail subband coefficients which we use for embedding. According to [3], the
DWR is given by the expression

DWR = 10 log10

(

σ2x
α2σ2w

)

(5.40)

where σ2x denotes the variance of the DWT detail subband coefficients and σ2w denotes the
variance of the watermarking sequence which in our case (i.e. bipolar watermark) equals 1.
Hence, we can express the embedding strength α as a function of the DWR and the variance of
the host signal as

α =

√

√

√

√

σ2x

exp
(

log(10)·DWR
10

) . (5.41)

The embedding strengths of the previous example (i.e. α = 0.2, 0.3, 0.4, 0.5)correspond to DWRs
of 67.05dB, 61.53dB, 59.03dB and 57.09dB. As we can see, the DWR is rather high; reasonable
DWRs for image watermarking are usually set to achieve a PSNR of 30dB to 50dB, i.e. the DWR
is in the range of 12dB to 20dB.
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5.2.1 Experiments

To conduct a comparative study of detector performance, we have to introduce the experimental
setup first. We use all images from the UCID image database. Since the original images are color
images, we first conduct a conversion to grayscale images by means of MATLAB’s rgb2gray
routine. Then, we extract a 256× 256 pixel block from each image, starting in the top-left hand
corner. Finally, all images are resized to 128 × 128 pixel using MATLAB’s imresize routine
which basically performs bicubic interpolation.

We implement the following detectors for additive spread-spectrum watermarks: the nam-
ing convention is, that the first part of the name denotes the host signal noise model and the
second part denotes the type of hypothesis test. For example, Cauchy-LRT signifies that the host
signal noise is modeled by a Cauchy distribution and the hypothesis test is a LRT. We highlight
that all mentioned LRT detectors are estimate-and-plug detectors and assume that the embed-
ding strength α is known at the detection side.

Linear Correlator (Gaussian-LRT, LC) This detector arises when we derive a LRT for Gaussian
host signal noise, assuming that all parameters are known a-priori. It turns out, that the
resulting detection statistic

T1(y) =
1
N

N∑

i=1

yiwi (5.42)

does neither depend on the noise distribution parameters nor on the embedding strength
and hence the resulting detector is a NP detector. The expressions for the mean and vari-
ance of the detection statistic under H0 and H1 are given in [3].

Generalized Gaussian LRT (GGD-LRT) This detector is introduced by Hernandez et al. [69],
based on the LRT and a Generalized Gaussian host signal noise model. The detection
statistic is given by

T2(y) = âĉ

N∑

i=1

(

|yi|
ĉ − |yi − αwi|

ĉ
)

(5.43)

where the distribution parameters a and c are estimated from the received signal without
caring whether a watermark is present or not.

Cauchy LRT (Cauchy-LRT) This detector is introduced by Briassouli et al. [12] as an extension
of the GGD-LRT detector. The host signal noise is modeled by a Cauchy distribution and
the detection statistic is given as

T3(y) =

N∑

i=1

log
(

γ̂2 + yi

γ̂2 + (yi − αwi)2

)

. (5.44)

Generalized Gaussian Rao (GGD-Rao) Nikolaidis et al. [139] first propose to use a Rao hy-
pothesis test as a replacement of the plug-and-estimate detectors based on the LRT. Their
work is motivated by the problem of informing the detector about the choice of α and
the bias introduced by estimating the noise distribution parameters from the received sig-
nal. Based on the results of Kay [82], the authors derive a Rao test assuming Generalized
Gaussian host signal noise with the detection statistic given by

T4(y) =

(∑N
i=1 sgn(yi)wi |yi|

ĉ−1
)2

∑N
i=1 |yi|2ĉ−2

(5.45)
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Detector µ̂0 6 µ̃0 σ̂20 6 σ̃20 ρ ∼ N(µ̂0, σ̃20) ρ ∼ N(µ̃0, σ̃20) ρ ∼ χ21 FP

GGD-LRT 98.36 15.40 88.57 2.54 - 0.1 · 10−3

Cauchy-LRT 98.43 41.03 96.83 2.39 - 0.1 · 10−3

Gaussian-LRT 62.63 59.34 97.16 95.07 - 0.9 · 10−3

Cauchy-Rao - - - - 82.88 1.7 · 10−3

GGD-Rao - - - - 99.48 0.8 · 10−3

Table 5.1: Evaluation whether the detection statistic distributions under H0 conform to the expected dis-
tributions computed on the basis of the received signal. The numbers represent the percentage of UCID
images where the test (given as column title) does not fail. The FP column lists the number of observed
false positives.

where sgn(·) denotes the Signum function.

First, we verify that the detectors actually exhibit the theoretically stated detection statistic
distribution under the null-hypothesis, since this allows to set the detection threshold to a given
probability of false-alarm. We verify that (i) the detector responses under H0 follow a Gaussian
distribution for all LRT detectors and a χ21 distribution for the Rao detectors; (ii) the detection
statistic parameters µ̃0, σ̃20 calculated from the received signal (see Fig. 5.3c) correspond to the
detection statistic parameters µ̂0, σ̂20 estimated from the detection responses ρ1, . . . , ρM under
H0. Due to the fact that we perform tests on all UCID images, we cannot directly compare the
detection statistic parameters by listing them in a table, such as in [69]. As an alternative, we
choose the following strategy: We perform a Chi-Square GoF test to check whether ρ1, . . .ρM ∼

N(µ̃0, σ̃20) or ρ1, . . . , ρM ∼ χ21, respectively. The results are listed in column five of Table 5.1.
Except for the Gaussian-LRT detector, however, there is evidence against the null-hypothesis in
more than 90% of all cases. A closer look at the data reveals, that µ̂0 and µ̃0 differ considerably
in some cases. Nevertheless, the variances σ̂20 and σ̃

2
0 coincide to a large extent. Based on this

observation, we need to know whether the difference in mean has any negative effect on the
probability of false-alarm, i.e. whether the actually observed detection statistic distribution
is shifted to the right. To rule out such a negative effect, we check if (i) µ̂0 6 µ̃0 and (ii) if
ρ1, . . . , ρM ∼ N(µ̂0, σ̃20), see columns one and three of Table 5.1. Given that both tests show no
evidence against the null-hypothesis, the detection threshold based on µ̃0 and σ̃20 is conservative
in the sense that the probability of false-alarm will be lower than expected (see Fig. 5.5). In
the last column of Table 5.1 we additionally list the number of observed false positives. The
numbers are in quite good accordance to the predefined probability of false-alarm of Pf = 10−3.

Performance without attacks Due to the large amount of images, we cannot present classic
ROC curves to evaluate the performance of the detectors. Further, our objective is to as-
sess the detector performance on the whole image database and not only on a selected set
of images. In particular, we are more interested in the ranking of the detectors in critical
conditions, i.e. when Pm is high. This is reasonable, since in practice we are not concerned
about detector performance when Pm ≈ 10−100 for example. To provide such a compara-
tive study, we fix the probability of false-alarm at a specified level, say 10−6, and construct
a c.d.f. plot of the corresponding Pm values on a logarithmic scale for each detector. We
then zoom-in on our Region of Interest (ROI), i.e. where Pm is high. To warrant this strat-
egy, Fig. 5.7 shows the original c.d.f. plot on the left-hand side and a zoomed-in plot to
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Figure 5.6: Four UCID images, ucid00246, ucid00444, ucid01059 and ucid01060 where all
five detectors fail to detect the watermark when embedding at a DWR of 12dB.

our ROI on the right-hand side. The DWR is set to 12dB for watermark embedding which
leads to an average PSNR of ≈ 42dB. Comparing both plots illustrates the point that the
ranking of the detectors changes as we move towards a higher probability of miss. In de-
tail, we observe that although the GGD-LRT and Cauchy-LRT detectors exhibit far better
performance then both Rao detectors when Pm < 10−100, the situation changes consider-
ably when Pm > 10−4. We observe, that the LRT detectors perform poorly and even fail
in some cases while the Rao detectors still exhibit Pm values of < 10−2. The plots further
highlight, that presenting ROC plots for a small selection of images cannot provide full
insight into the ranking of detectors. It is even possible, that the ROC curves for a few
images might convey a completely wrong impression about detector performance. We
further note, that we can identify four UCID images where all detectors fail to detect the
watermark in our setup. These images were excluded from the plots and are shown in
Fig. 5.6. Detection failure occurs, since the embedding strength corresponding to a DWR
of 12dB is too low for these images, resulting in no watermark presence.
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Figure 5.7: C.d.f. plots of the probability of miss Pm for a fixed probability of false-alarm Pf = 10−6

and a DWR of 12dB over 1334 UCID images including a zoomed-in version of the region of interest,
i.e. where Pm > 10−5.

Performance under attacks To evaluate the performance of the Cauchy-Rao detector under an
attack, we choose JPEG compression with quality factors Q = 30 and Q = 70. The mean
PSNR over the whole UCID image database for quality factorQ = 30 is ≈ 30dB, whereas
we obtain ≈ 33dB for quality factor Q = 70. In both cases, we fix the probability of false-
alarm to Pf = 10−3, since for lower Pf values we do not get any reasonable results w.r.t our
low image size of 128 × 128. As in the previous experiments, the watermark embedding
strength is set to obtain a DWR of 12dB. Table 5.2 lists the test results when evaluating
the detection statistic distribution under H0. We observe the interesting effect, that the
actual detection statistic distributions are pretty close to the theoretical ones. Comparing
Table 5.2 to Table 5.1 shows that there is no evidence against the null-hypothesis N(µ̃0, σ̃20)
in almost all cases. Only for JPEG quality factor 30, the number of images where we
observe evidence against χ21 increases slightly. The c.d.f. plots of Pm over (almost) all
UCID images are shown in Fig. 5.8. We again excluded the images shown in Fig. 5.6,
since all detectors failed to detect the watermark. The left-hand side of Fig. 5.8 shows the
unscaled versions of the c.d.f. plots and the right-hand side shows a zoomed-in version,
where we focus on the most interesting region. In contrast to Fig. 5.7, the performance of
the GGD-Rao detector strongly deteriorates and the LC detector starts to show acceptable
performance for quality factor Q = 30. A possible explanation for the poor results of
the GGD-Rao detector is the negative impact of JPEG compression on the ML parameter
estimation procedure of the GGD. Regarding the Cauchy-Rao detector, we observe stable
behavior over the whole range of Pm values. Even when Pm is high, the Cauchy-Rao
detector exhibits acceptable performance.

5.2.2 Some Computational Considerations

As a final part of this section, we take a closer look at the computational requirements of each
detector. This is a necessary step, since we originally proposed the Cauchy-Rao detector as a
lightweight alternative to the GGD-based detectors. In fact, low computational complexity was
a key motivation to derive a novel watermark detector. In particular, we consider the number
of arithmetic operations to calculate the detection statistics, briefly discuss parameter estima-
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Detector µ̂0 6 µ̃0 σ̂20 6 σ̃20 ρ ∼ N(µ̂0, σ̃20) ρ ∼ N(µ̃0, σ̃20) ρ ∼ χ21 FP

GGD-LRT [69] 66.44 54.11 97.53 95.94 - 0.96 · 10−3

Cauchy-LRT [12] 66.26 53.51 97.76 95.44 - 0.94 · 10−3

Gaussian-LRT 56.88 52.47 96.56 94.62 - 0.92 · 10−3

GGD-Rao [139] - - - - 72.50 0.66 · 10−3

Cauchy-Rao - - - - 74.96 0.45 · 10−3

GGD-LRT [69] 77.06 58.52 97.76 95.37 - 4.7 · 10−3

Cauchy-LRT [12] 78.33 59.04 97.98 95.81 - 1.5 · 10−3

Gaussian-LRT 59.49 51.12 97.46 96.79 - 0.9 · 10−3

GGD-Rao [139] - - - - 92.75 0.07 · 10−3

Cauchy-Rao - - - - 96.79 0.05 · 10−3

Table 5.2: Evaluation whether the detection statistic distributions under H0 conforms to the ex-
pected distributions computed on the basis of the received signal under the influence of JPEG com-
pression with quality factors Q = 30 (top) and Q = 70 (bottom). The numbers represent the per-
centage of UCID images where the test (given as column title) does not fail. The column FP lists the
number of observed false-positives.

tion issues and highlight the advantages of the Rao detectors w.r.t. threshold determination. By
arithmetic operations, we understand the number of additions & subtractions (+,−), multiplica-
tions & divisions (×,÷), logarithms & exponentiations (log, pow) as well as computation of sgn
and |·|. In Table 5.3, we provide the number of operations as a function of the input vector length
N. From these numbers it is obvious, that the LC detector is by far the simplest one in terms of
arithmetic operations, since it involves only summations and multiplications of floating point
numbers. Only the watermarked coefficients and the watermark sequence itself are involved.
However, the Cauchy-Rao detector is only slightly more expensive, since the exponentiations
in Eq. (5.38) merely involve integer exponents. The remaining operations are just additions and
multiplications which can be very efficiently performed with few CPU cycles. In contrast to
that, the Cauchy-LRT detector requires N computations of the logarithm and the GGD-LRT as
well as the GGD-Rao detector even require exponentiations with floating point numbers, which
is very expensive in terms of CPU cycles.

Regarding parameter estimation issues, the LC detector is again the simplest one, since it
requires no parameter estimation at all, followed by the Cauchy-Rao and Cauchy-LRT detector,
which both require to estimate the shape parameter γ of the Cauchy distribution, see Section
2.2.2. In case of the detectors based on the GGD, we know that ML estimation of the shape c
and scale parameter a requires to find the roots of a transcendental equation, see Section 2.2.1.
Our estimation experiments confirm that the ML estimation of γ is faster by a factor of four
than ML estimation of the GGD shape parameter c. When relying on the estimation procedure
suggested by Tsihrintzis et al. [176], see Eq. (2.6), estimation of γ is even linear in N.

Finally, we cover the effort for the determination of detection thresholds. In case of the
LC, GGD-LRT and Cauchy-LRT detector, we have to compute the mean and variance of the
normally distributed detection statistic under H0 from the received signal yi to determine a
suitable threshold. In contrast to that, the Cauchy-Rao and GGD-Rao detectors do not require
to compute detection statistic parameters at all, since they are CFAR detectors. A detection
threshold needs to be computed only once from Eq. (5.23).
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Figure 5.8: C.d.f. plots of the probability of miss Pm for a fixed probability of false-alarm Pf = 10−3

over 1334 UCID images under JPEG compression with quality factors Q = 30 and Q = 70. The
right-hand side shows a zoomed-in version of the region of interest, i.e. where Pm > 10−3 and
Pm > 10−5, respectively.

Detector
Operations

± ×,÷ | · |, sgn pow , log
Gaussian-LRT (LC), Eq. (5.42) N N + 1
Cauchy-Rao, Eq. (5.38) 2N 3N+ 4
GGD-LRT [69], Eq. (5.43) 3N N + 1 2N 2N+ 1
Cauchy-LRT [12], Eq. (5.44) 3N 3N+ 2 N

GGD-Rao [139], Eq. (5.45) 2N+ 1 3N+ 2 2N N

Table 5.3: Number of arithmetic operations to compute the detection statistic.

5.3 Color Image Watermarking

Most of the watermarking research focuses on grayscale images. The extension to color image
watermarking is usually accomplished by marking only the luminance channel or by process-
ing each color channel separately [6]. However, it is well known that the human visual system
is least sensitive to the yellow-blue channel in the opponent representation of color, thus the
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Figure 5.9: Extraction of DWT coefficient vectors xi from three subbands (here HL) of different color
channels.

watermark signal should be allocated to that band [158, 177]. In this section, we derive a novel
watermark detector for color image watermarking. We propose to use a multivariate statistical
model to capture the association structure between wavelet detail subbands across RGB color
channels. Our objective is to show that watermark detection performance is improved, com-
pared to decorrelating the color bands [4] or exploiting the correlation based on a Gaussian host
signal model [6]. We highlight that we do not focus on perceptual shaping of the watermark
signal but on detecting the watermark in highly correlated color channels where the watermark
is embedded with constant strength.

5.3.1 A LRT detector for MPE host signal noise

We introduce an estimate-and-plug detector based on the LRT to detect an additively embedded
watermark in host signal noise which follows a MPE distribution (see Section 2.2.3). For the fol-
lowing derivation of the detector, we will rely on the convention that x denotes a 3-dimensional
vector of DWT coefficients, constructed by selecting one coefficient from the same detail sub-
band of each color channel (illustrated in Fig. 5.9). We write x1, . . . , xN to refer to the coefficient
vectors. Our watermarkwill be a realization ofN i.i.d. copies of a random variableW following
a discrete uniform distribution on {+1,−1}, see Eq. (5.1). The watermark sequence is denoted
by w1, . . . ,wN. We follow the strategy to embed the same watermark in all three detail sub-
bands. Given that 1 = [1 1 1] denotes a vector of ones, then the watermark vector to mark xi

can be written as wi = wi1. According to the rule of additive spread-spectrum watermarking,
it follows that

∀i : yi = x + αwi (5.46)

where α > 0 denotes the embedding strength and yi denotes a watermarked DWT coefficient
vector. We could choose a separate embedding strength for each signal dimension, but for the
sake of readability we focus on the most simple case here. The embedding process is completed
by computing the inverse DWT, followed by a quantization step to limit the pixel values to
[0, 255]. Based on this watermarking setting, we can formulate the two hypothesis for our signal
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detection problem as

H0 : y = x (no/other watermark), (5.47)

H1 : y = x + αw (watermarked). (5.48)

Since we assume that α is known at the detection stage (i.e. the embedder has informed the
detector about its choice of α), we end up with the problem of detecting a known signal in
incompletely specified noise. We proceed by constructing a NP detector as if all parameters
were known for both H0 and H1 and see how far we can get. Assuming independence of the
observations x1, . . . , xN allows to formulate a LRT which decides H1 in case

T(y1, . . . ,yN) =

∏N
i=1 p(yi − αwi)
∏N

i=1 p(yi)
> γ. (5.49)

After taking the logarithm and inserting the p.d.f. of the MPE distribution, see Eq. (2.9), we
obtain the test statistic

T(y1, . . . ,yN) = −
1
2

N∑

i=1

(

(yi − αwi)
TΣ−1(yi − αwi)

)β
+

1
2

N∑

i=1

(

yT
i Σ−1yi

)β
(5.50)

where we have used the fact that non signal-dependent terms are absorbed into the threshold
γ. As we can see, the detection statistic depends on the host signal noise parametersΣ and β. In
case of a GLRT approach, we would have to estimate both parameters under H0 and H1 which
is analytically intractable. The estimate-and-plug detector, however, simply estimates the pa-
rameters from the received signal yi. If we consider all terms of the summation in Eq. (5.50)
as independent, we can apply the central limit theorem and conclude that T follows a Nor-
mal distribution under H0 and H1 with parameters (µ0,σ20) and (µ1,σ21), respectively. Another
difficulty arises, since we cannot compute the expected value of T w.r.t. yi in closed-form. Al-
ternatively, it is possible to consider yi as fixed and average over the watermark signal wi. This
strategy is also followed by Hernandez et al. [69] to derive the detection statistic parameters of
the GGD-LRT. The expected value µ0 under H0 (note that yi = xi) then takes the form

µ0 = −
1
4

N∑

i=1

(

(xi − α)T Σ−1(xi − α)
)β

+
(

(xi + α)TΣ−1(xi + α)
)β

+
1
2

N∑

i=1

(

xT
i Σ−1xi

)β
. (5.51)

To derive the variance σ20 of T under H0, we exploit the following relation: given that X denotes
a random variable and k = const., we know that V(

∑
X) =

∑
V(X) and that V(X + k) = V. It

follows that

V(T |H0) = V

(

−
1
2

N∑

i=1

(

(xi − αwi)
TΣ−1(xi − αwi)

)β

)

(5.52)

using yi = xi. We further know, that V(kX) = k2V(X) which leads to

V(T |H0) =
1
4

N∑

i=1

V

(

(

(xi − αwi)
T Σ−1(xi − αwi)

)β
)

. (5.53)

To deduce the expression for V(T(y1, . . . ,yN)), we remember that wi is our variable term and
that the elements of wi follow a discrete uniform distribution on {+1,−1}. The variance of a
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random variableW with a discrete uniform distribution is given by

V(W) =
1
2





2∑

i=1

w2
i −

1
2

(

2∑

i=1

wi

)2


 = 1 (5.54)

with w1 = −1 and w2 = +1. The variance of the detection statistic T under H0 then follows as

σ20 =
1
16

N∑

i=1

(

(

(xi + α)TΣ−1(xi + α)
)β

−
(

(xi − α)T Σ−1(xi − α)
)β
)2

. (5.55)

Given that β̂, Σ̂ denote the estimates of the MPE parameters – computed from the received
signal yi – we can insert these estimates into Eqs. (5.51) and (5.55) to obtain µ̂0 and σ̂20. Based on
a chosen probability of false alarm Pf, it is then straightforward to set the detection threshold γ
as

γ = erfc−1(2Pf)

√

2σ̂20 + µ̂0. (5.56)

We consciously avoided the term Neyman-Pearson criterion to highlight that we cannot guar-
antee to constrain the probability of false-alarm due to the reliance on the host signal noise
parameters (which are estimated). We can only say, that the threshold is selected in a Neyman-
Pearson sense. We have to perform an empirical evaluation to ensure that we can constrain
probability of false-alarm. Regarding the detection statistic parameters (µ1,σ21) under the alter-
native hypothesis H1, it can easily be shown that µ1 = −µ0 and σ21 = σ20.

5.3.2 Experiments

All following results are obtained on the whole UCID image database. Similar to the previous
experiments of Section 5.2.1, all images are cropped to 256 × 256 pixel, followed by a down-
scaling stage to 128 × 128 pixel. The watermark is embedded in the HL subband on DWT
decomposition level two. Biorthogonal CDF 9/7 filters are used for DWT decomposition. To
compare the performance of the proposed detector against two state-of-the-art detectors for
color image watermarking, we implement the approaches proposed by Barni et al. in [4] and
[6]. These approaches are briefly described next, including the parameter configuration we use
in the experiments.

DCT-LRT In [4], Barni et al. propose to embed a watermark sequence into the mid-frequency
DCT coefficients obtained by computing a full-frame DCT on each color channel. In more
detail, the (k+1)-th to (k+n)-th DCT coefficients are selected in MPEG zigzag-scan order
for watermark embedding, as shown in Fig. 5.10b. At the detection stage, the classic LC
detector is extended to the multichannel case. We point out, that the authors propose to
use different embedding strengths for each channel, motivated by a study on how the Hu-
man Visual System (HVS) perceives color stimuli at different wavelengths. The detection
statistic is given by

T1(y1, . . . ,yN) =
1
N

N∑

i=1

wi(yR,i + yG,i + yB,i) (5.57)

where yR,i denotes the i-th watermarked DCT coefficient of the red color channel and wi

denotes the i-th element of the watermark sequence. The watermark is a realization of N
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i.i.d. copies of a random variableW ∼ N(0, 1). The authors show, that the detection statis-
tic underH0 follows a zeromeanGaussian distributionwith variance given in [4]. This pa-
rameter is estimated from the received signal. To choose the embedding strengths of each
channel, we fix the total strength α and use the relations αR +αG +αB = α,αR/αG = 1.37
as well as αB/αG = 3.24 to solve for αR,αG and αB.

FFT-LRT In [6], Barni et al. propose a different watermarking strategy based on decorrela-
tion of the RGB color channels by means of the Karhunen-Loéve Transform (KLT). The
decorrelated color channels are then transformed by the FFT. The basic idea is, that decor-
relation allows to assume independency (at least in the Gaussian case) of the channels and
leads to an analytically tractable joint statistical model for the magnitudes of the FFT co-
efficients. However, we point out that some caution is advisable here, since decorrelating
the color channels does not guarantee that the transform domain coefficients across color
bands are mutually decorrelated as well [107]. Basically, the approach is an extension of
the work presented in [5] where the authors suggest a Weibull model for the magnitudes
of FFT coefficients and derive a corresponding watermark detector based on the LRT. The
watermark sequence is embedded in a diamond shaped region of the FFT domain (see
Fig. 5.10a), defined by the (k + 1)-th to (k + n)-th diagonal of the first FFT quadrant.
Separate embedding strengths per channel are proposed to take into account that the KLT
leads to decorrelated channels with decreasing variance. Lets assume for a moment that
γ denotes the embedding strength and A,B,C denote the decorrelated color bands, then
the detection statistic is given as

T2(y1, . . . ,yN) =
∑

c∈{A,B,C}

N∑

i=1

yαc

c,i [(1 + γcwi)
αc − 1]

[βc(1 + γcwi)]αc
(5.58)

where αc,βc are the Weibull parameters estimated from the received FFT coefficient mag-
nitudes of the c-th decorrelated color band.

For all following results, the embedding strength of each approach is chosen such that we
obtain a mean PSNR of ≈ 50dB across the three RGB channels of an image. Further, we set
k = n = 8000 in case of [4] and k = 30, n = 60 in case of [6]. This gives ≈ 8000 marked
coefficients for both the DCT and FFT approach (due to the symmetry of the FFT). For the
proposed MPE-LRT detector, we choose the DWT HL subband on decomposition level two,
resulting in ≈ 4000 marked coefficients in each channel.

Before we present the comparative study of the detection performance, we have to verify
two important assumptions in order to ensure reasonable threshold selection. First, we verify
that the detector responses under both hypotheses follow a Gaussian law for all three detectors
by employing a Lilliefors test [108] at the 5% significance level. We report, that in no case the
test shows evidence against the null-hypothesis. Second, we have to ensure, that the detection
statistic parameters µ̃0 and σ̃20 can be determined on the basis of the received signal. For this
purpose, we conduct a Monte-Carlo study withM = 1000 runs to obtain Table 5.41. The param-
eters µ̂0 and σ̂20 again denote the detection statistic parameters estimated from the experimental
responses under H0, i.e. ρ1, . . . , ρM (i.e. by sample mean and variance). Further, the column FP

lists the number of actually observed false positives. As we can see, the detection statistic pa-
rameters of the MPE-LRT and DCT-LRT detector can be fairly well estimated from the received

1The remaining GoF tests are performed using a Chi-Square GoF test.
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k n

(a) FFT domain embedding [4]

(k+1)−th

(k + n)-th

(b) DCT domain embedding [6]

Figure 5.10: Watermark embedding location of the approaches [4] and [6]. In both works, the watermark
is embedded in mid-frequency coefficients of either the FFT [4] or DCT [6]. The symmetry of the FFT
quadrants is indicated by marking coefficients with equal values in red and blue.

Detector µ̂0 6 µ̃0 σ̂20 6 σ̃20 ρ ∼ N(µ̃0, σ̃20) N(µ̂0, σ̃20) ρ ∼ N(µ̃0, σ̂20) FP

MPE-LRT 52.17 49.25 71.60 100.0 71.75 2.5 · 10−3

DCT-LRT [4] 52.09 48.61 99.93 100.0 99.93 1.0 · 10−3

FFT-LRT [6] 48.28 0.00 0.009 0.005 56.50 8.8 · 10−2

Table 5.4: Evaluation of the detection statistic distribution under H0 conforms to the expected distribution
computed on the basis of the received signal. Then numbers represent the percentage of UCID images
where the test (given as column title) does not fail. The probability of false-alarm is set to Pf = 10−3.

signal. The percentage of observed false positives is in accordance with the fixed Pf value of
10−3. In case of the FFT-LRT detector, however, the actually observed variance is larger than
expected, resulting in a slightly higher number of false positives. In Fig. 5.11a, we show c.d.f.
plots of the probability of miss over the whole UCID image database with a fixed Pf of 10−3.
Compared to the DCT-LRT and FFT-LRT, the MPE-LRT shows superior performance, especially
in the critical region where Pm is high. However, we note that there is a considerable number
of images where all detectors fail to detect the watermark. Due to the relatively low resolution
of the images (128 × 128) and the low embedding power to reach a mean PSNR of 50dB, this
result is not unexpected, though. Fig. 5.11b shows the same plots, but choosing the DWR such
that we achieve a mean PSNR of 40dB over the color channels of each image. We can see that
the detectors of Barni et al. [4, 6] perform considerably better, but still the LRT-MPE shows the
best performance, even for high values of Pm.

5.4 Discussion

In this chapter, we introduced two novel detectors for additive spread-spectrumwatermarking
in the DWT domain. After a careful recapitulation of the prerequisites to deploy certain signal
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Figure 5.11: C.d.f. plots of the probability of miss Pm for a fixed probability of false-alarm Pf = 10−3 over
1338 UCID images including a zoomed-in version on the ROI. The embedding strength was set to achieve
a mean PSNR (over the color channels) of 50dB (top) and 40dB (bottom).

detection strategies, we motivated the Rao hypothesis test as a lightweight alternative which
requires very little knowledge about unknown parameters. We then derived a Rao hypothesis
test conditioned on a Cauchy host signal noise model and showed that the detector exhibits
quite good performance compared to the state-of-the art detectors in this field. The Cauchy-
Rao detector is also attractive from a computational point of view, since computation of the
detection statistic is comparable to the LC detector, estimation of the Cauchy shape parameter
is less expensive than estimation of the GGD shape parameter and the computational demand
for threshold calculation vanishes at all.

In the second part of this chapter, we focused on the problem of color image watermarking.
By relying on a multivariate model for DWT detail subband coefficients, we could derive a
novel estimate-and-plug detector based on the LRT. A comparative study to two state-of-the
art detectors revealed quite competitive performance of the novel detector on the whole UCID
image database. The results of the MPE-LRT detector show that the association between the
DWT coefficients can be efficiently exploited to enhance detection performance. Nevertheless,
estimation of the MPE parameters is a computationally expensive operation which prevents
deployment of the MPE-LRT detector in computationally demanding scenarios.
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In the experimental sections of this chapter, we have further introduced a novel visual tool
to evaluate detector performance. Motivated by the shortcomings of the classic ROC plots –
which only allow to visualize detector performance on one image – we suggested a c.d.f. plot
of the probability of miss at a fixed probability of false-alarm. We strongly believe that this
is a suitable way to study detector performance over a large set of images. To the best of our
knowledge, such a plot has not appeared in literature so far. Based on our experimental results,
we come to a conclusion similar to Chapter 3. In general, it is not advisable to thoroughly rely
on ROC curves to judge the quality of a detector. We rather suggest to fix the probability of
false-alarm, estimate the probability of miss and focus attention on the difficult cases.

Finally, we like to point out that a lot of questions remain unanswered and are topic of future
research. It seems promising to take a closer look at noise parameter estimation for example.
In consideration of the variety of possible attacks, the question arises whether it is possible to
use fixed parameter settings instead of ML estimation to stabilize detector performance. This
might negatively affect performance in case of no attacks, but could be beneficial in situations
where the attack distorts the coefficient statistics. Hernandez et al. [69] already suggested
a fixed setting of c = 0.8 for example. In addition to that, fixing the host noise parameters
would also contribute to the idea of lightweight detection and allow application of a detector
in scenarios where real-time performance is required, e.g. real-time detection of watermarks
in video frames. Finally, the two novel detectors have to be evaluated under the influence of
common attacks. Since we strongly focused on the theoretical signal detection part, we omitted
the attack evaluation here and consider that as a topic for future work.



Chapter 6

Concluding Remarks

In this last part of the thesis, we recapitulate the main contributions and highlight future re-
search directions. A general conclusion we draw from our studies is that there is still very
much potential in developing novel statistical models for wavelet transform coefficients. In
the context of this thesis, we could at least show that the models of Chapter 2 led to improve-
ments upon state-of-the-art work in texture image retrieval, medical image classification and
watermarking research.

In particular, we showed that the proposed models for DTCWT coefficient magnitudes led
to a very lightweight probabilistic texture retrieval approach with remarkable retrieval per-
formance. Incorporating coefficient dependencies across DTCWT subbands even further im-
proved the retrieval results. However, the improvements in retrieval accuracy came at the cost
of degraded runtime which highlights the trade-off between model complexity and computa-
tional performance. Surprisingly, the same statistical models turned out to be equally useful
for medical image classification. We introduced a set of novel image features by refining exist-
ing ideas from texture classification literature and demonstrated a high accuracy in predicting
histological diagnostic results from the visual appearance of colorectal lesions. Eventually, we
pointed out the versatility of the statistical models by deriving two novel watermark detectors
for luminance channel and color image watermarking. The detection experiments on a large set
of images revealed competitive or even superior detection performance to current state-of-the-
art detectors.

We summarize, that the particular field of application will eventually determine which sta-
tistical model to use. In situations where computation time is a crucial factor for example, the
most suitable model is useless in case the key processing steps become too complicated, either
analytically or computationally. In the context of watermarking for instance, a too complex
model might substantially complicate the derivation of the detection statistic or even prevent to
deduce a closed-form expression. In addition, parameter estimation issues might arise as well.
A similar situation occurs in the context of probabilistic image retrieval, as we have pointed out
by introducing two scenarios with different computational requirements. For a large number of
applications, the following rule of thumb remains valid: the more information we incorporate
into a statistical model, the higher the price we pay in terms of runtime performance. There is
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usually no such thing as a win-win situation in this context.

6.1 Future Research Directions

Finally, we remark that there are obviously many interesting topics we could not cover, or even
address, in this thesis and which remain part of future research. In consideration of the three
fields of applicationwe discussed in this work, we like to highlight possible directions for future
studies:

• In the context of texture image retrieval, we see great potential in a copula-based approach
which incorporates the Generalized Gamma distribution [174] as a model for the margins.
Since Choy & Tong [21] recently demonstrated better texture retrieval performance than
the GGD based retrieval approach of Do & Vetterli [40], there is good reason to believe
that a copula-based model would perform even better. Nevertheless, computational con-
siderations will definitely play a key role for any practical application, since estimation of
the Generalized Gamma model is computationally quite involved (e.g., see [172]).

• Concerning our particular watermarking setup of Chapter 5, the issue of how to combine
detection responses from different detection processes is a neglected topic in literature.
The problem occurs, when we embed watermarks in more than just one DWT subband
and then try to combine the detection statistics into an overall detector response. Al-
though a sum of i.i.d. Normal or Chi-Square random variables still follows a Normal or
Chi-Square distribution, application of the additivity property is only reasonable in case
of i.i.d. detection statistics. Since coefficients exhibit dependencies across subbands and
the detection statistic depends on the coefficients, this prerequisite is obviously violated.
Consequently, this raises the question of how to constrain the probability of false-alarm.
In fact, we presume that this problem calls for a flexible multivariate coefficient model,
since this would remedy the fusion problem by shifting complexity to the modeling and
detector derivation stage.

• From our point of view, dealing with the fusion problem is a key issue for any further
development of the computer-aided diagnosis system of Chapter 4 as well. Up to now,
the majority of research work has focused on improving classification rates of standalone
approaches. The only steps in the direction of combining prediction results were made in
[62] or [61] with promising preliminary results. However, problems like overtraining is-
sues or generalization quality still remain untreated. Finally, we suggest to further pursue
the generative model based prediction strategy because of the advantages with respect to
the aforementioned problems.

Although we have good reason to believe that other application areas, such as denoising or
segmentation will benefit from the proposed statistical models in a variety of ways, this remains
to be shown in future research work.
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