PCL and ParaView—Connecting the Dots

Pat Marion, Roland Kwitt, Brad Davis
Kitware Inc.
Chapel Hill, NC, USA

Abstract

We introduce a novel open-source framework for analyz-
ing and exploring point cloud datasets and algorithms. This
is done by integrating the Point Cloud Library (PCL) within
ParaView, a parallel scientific visualization tool. In par-
ticular, we demonstrate that by wrapping PCL algorithms
as VIK' filters, we can leverage PCL’s functionality in an
interactive, easy-to-use manner within ParaView. The pro-
posed approach enables rapid algorithm development in a
coherent framework without the need to write custom visu-
alization code. We illustrate the advantages of the frame-
work with usage examples such as segmentation, data an-
notation and Python integration. Additionally, we build
upon ParaView’s inherent parallelization capabilities and
present two strong scaling experiments that demonstrate
near-linear scaling performance gains in a multi-processor
setup.

1. Motivation

Over the last decade, a variety of sensors have emerged
that allow 3-D sensing of the environment, even at mod-
erate cost (e.g., Microsoft Kinect). Many of these sensors
produce enormous amounts of data which leads to algorith-
mic as well as computational challenges. In the DARPA Ur-
ban Challenge for instance, many teams used 3-D LIDAR
sensors like the Velodyne HDL-64E to generate, in real-
time, massive 3-D point clouds of the environment which
are then input to obstacle detection, or SLAM algorithms.
The Point Cloud Library (PCL) [7] addresses many of the
challenges that arise in processing such data amounts by
providing an extensive set of state-of-the-art algorithms for
registration, recognition, or feature extraction, just to men-
tion a few. However, an essential part of developing algo-
rithms for point cloud data processing is a powerful, versa-
tile, and interactive visualization tool. This not only allows
for exploration of the data in the first place, but also facili-
tates interactive algorithm exploration—studying parameter

'Visualization Toolkit (VTK) [8]

Michael Gschwandtner
Department of Computer Science
University of Salzburg, Austria

spaces and creating, reorganizing, and assessing processing
pipelines.

While PCL provides examples of basic point cloud view-
ers, we are still limited to a static analysis of the data, un-
less we want to develop custom, interactive, visualizations.
While static visual analysis of an algorithm’s output is valu-
able on its own, the ability to interactively modify algorithm
parameters and even rearrange the processing pipeline is po-
tentially beneficial, especially in the context of rapid pro-
totyping. While this functionality could be implemented
in a custom solution, we argue that time spent writing vi-
sualization routines is probably better spent advancing the
algorithm part. In addition to that, the re-usability of cus-
tom visualization code is usually low. Many solutions tend
not to be generic enough to be used in another project. As
a consequence, this inevitably leads to re-implementations
and even more time spent on non-algorithmic problems.

To address these issues, we propose combining the al-
gorithmic power of PCL with ParaView [I, 9], a well-
established scientific visualization tool that is designed to 1)
operate on massive data sets [4] and 2) can be run as a par-
allel visualization solution (cf. [2]). While several commer-
cial and non-commercial visualization solutions exist (e.g.,
LViz, MARS, CloudCompare, or MeshLab), the conceptual
similarity to PCL renders ParaView a natural choice that al-
lows a straightforward and seamless integration.

ParaView is an open-source, multi-platform data analy-
sis and visualization framework. The Visualization Toolkit
(VTK) [8] provides the data model and filtering pipeline at
ParaView’s core. Users can quickly build visualizations to
analyze their data using qualitative and quantitative tech-
niques. ParaView was developed to analyze extremely large
datasets using distributed memory computing resources,
and is runnable on systems ranging from single-core lap-
tops to supercomputers [4].

Among the features that make ParaView a desirable plat-
form for PCL integration are its ability to manipulate dif-
ferent data types together in the same scene, e.g., 2-D and
3-D image data, structured and unstructured grids, meshes,
and point clouds, as well as tabular data and graphs. Ad-
vanced rendering capabilities such as volume rendering are

VTK Data
\

VTK to PCL
(@ bridge

PCL Wrapping

PCL algorithm
(e.g. RANSAC)

i) New cloud
i) New attribute
etc.

PCL to VTK
(b) bridge

VTK Data

D:

Figure 1. Wrapping of PCL algorithms as VTK filters. Depending
on the type of output data of the PCL algorithm, we create new
point clouds, add attributes (e.g., outlier field), etc.

available along with a flexible color map and transfer func-
tion editor. ParaView provides a 3-D render view, 2-D chart
and plot views, and a spreadsheet view. ParaView has sup-
port for time varying datasets, and includes filters capable of
handling time series data. The animation framework further
provides a simple means of producing movies with camera
sweeps and varying filter parameters.

ParaView’s Python interface ties together these features;
filters, views, and I/O routines are fully scriptable. The
Python integration includes support for numpy, allowing for
rapid prototyping with efficient array computations.

2. Combining PCL with ParaView

The central workflow in ParaView is the filter pipeline.
Data flow starts with a source filter, commonly a reader
that loads data from the filesystem. Next, a data process-
ing pipeline is constructed by chaining together filters. The
output and intermediate stages of the pipeline can be visu-
alized in 3-D render views, displayed in tabular form, or
plotted in a chart view (e.g., as a histogram). By combining
PCL with ParaView, a pipeline can execute filters from both
PCL and VTK together.

PCL algorithms are made available to ParaView through
a PCL plugin for ParaView. We have developed a method
of wrapping PCL algorithms within VTK filters which are
then accessible in ParaView via a plugin. The plugin cur-
rently provides several PCL filters from the standard PCL
distribution, and establishes a process whereby additional
PCL filters can also be wrapped. In addition, this allows
developers of new PCL algorithms to wrap their own work
for use within ParaView and provides a convenient means

for sharing their work.

Data is passed between VTK filters using the VTK data
object. A VTK data object is a container that holds ver-
tices, cells, and attributes. When a VTK filter wraps a PCL
filter, it internally converts VTK’s input point cloud to the
PCL data type and then executes the PCL filter, as depicted
in Fig. 1(a). The default PCL point cloud data type (using
four-component SSE memory alignment) is not compatible
with VTK’s three-component point data type, so the con-
version requires a temporary copy of the data to be resident
in memory while the PCL algorithm runs. Zero-copy con-
versions would be possible using custom PCL point types.

Upon completion of the PCL algorithm, the output is
converted to a suitable VTK type, see Fig. 1(b). The conver-
sion strategy of the PCL filter output depends on the nature
of the algorithm. For example, the Voxel Grid filter outputs
a new point cloud, while the Normal Estimation filter out-
puts a vector at each point of the input point cloud. The
result of the Euclidean Clustering filter is a set of point in-
dex arrays, one array per cluster.

In the first case, when a new point cloud is produced, the
VTK filter wrapper converts the new PCL point cloud into a
VTK point dataset and returns the result. In the second and
third cases, the VTK filter wrapper passes through the input
point cloud and appends the resulting attribute arrays. In the
case of normal estimation, the new attribute array will be a
three-component array consisting of the (z, y, z) normal for
each point in the cloud. For Euclidean clustering, an integer
array is used to indicate point-wise cluster id.

VTK’s data object has the ability to add a growing num-
ber of attribute arrays, consisting of any primitive data type
and number of components. ParaView can visualize the
point cloud attributes with colors mapped through a lookup
table, or by rendering points with color values supplied di-
rectly from an RGB attribute array. Additionally, new at-
tribute arrays can be created by combining attributes arrays
with the Calculator filter.

When wrapping PCL filters such as the RANSAC plane
fit algorithm, rather than extracting the inlier points to pro-
duce a new point cloud, we choose to pass through the en-
tire input point cloud and add a new attribute array labeling
points as model inliers or outliers. This way, the filter result
can be visualized with unique colors mapped to the inlier
and outlier points, and the job of extracting the inlier or
outlier points can be deferred to another filter such as Par-
aView’s Threshold Points filter.

The PCL plugin also includes reader and writer filters
that provide I/O capabilities for PCL’s native PCD file for-
mat. The reader is capable of loading ASCII and binary
PCD files containing (z, y, z) coordinates, intensities, RGB
colors, and normals, and likewise the writer produces PCD
files containing point clouds with similar attributes.

(a) Park benches (b) Frustum selection

(¢) Refined selection

Annotated as benches

(d) Clustered & Boxed (e) Annotated

Figure 2. Illustration of the annotation example pipeline: (b)-(c) Iterative frustum refinement to isolate points; (d) Euclidean clustering

and bounding box extraction; (e) Object annotation/labeling.

3. Usage Examples

In this section, we present three usage examples that il-
lustrate the advantages of combining PCL with ParView for
1) point cloud annotation, 2) rapid prototyping of an ob-
ject segmentation pipeline and 3) parallelization of compu-
tationally intensive tasks.

3.1. Data material

We use two different types of point cloud datasets in this
section. The first dataset is a fable scene, see Fig. 3(a), cap-
tured using PCL’s OpenNI grabber with Microsoft’s Kinect
camera. The point cloud contains (z,y, z) plus RGB data.
The second dataset is a point cloud of a city scene, see
Fig. 2(a), generated by simulating a Velodyne HDL-64E
S2 LIDAR scanner. The sensor is mounted on a car driving
through an artificial city (created using Blender?). The sim-
ulation is done in BlenSor [5]°, an open source project that
simulates many of the physical characteristics (including
typical sensor noise) of different LIDAR scanners. While
the table scene contains ~ 240000 data points, the city
scene contains ~ 10.8 million data points.

3.2. Point cloud annotation

In our first use-case, we demonstrate ParaView as an in-
teractive data exploration tool by using it for extracting and
annotating objects in point clouds.

A common challenge when developing segmentation or
recognition algorithms for point cloud data is the lack of a-
priori available ground-truth data that is required for train-
ing discriminant classifiers, or the quantitative evaluation
of algorithm performance. In our example, the objective is
to manually extract bounding boxes from the park benches
shown in Fig. 2(a). This data could later be used to train or
evaluate the performance of a park bench detector.

A pragmatic, yet time-consuming, approach could be to
use a programmatic concatenation of several pass-thru fil-
ters, which subsequently isolate the object(s) of interest.
Finding the right settings for each coordinate axis, however,

2http://www.blender.org
3http://www.blensor.orq

can be quite challenging. For example, the park benches in
Fig. 2(a) are 1) directly located under the edge of a large
building and 2) in vicinity to some pillars; adjusting the co-
ordinate axis parameters of pass-thru filters is tricky in that
case.

It is substantially simpler to create these pass-thru fil-
ters using ParaView’s interactive frustum selection, thus in-
crementally extracting the points corresponding to the park
benches. This is done by finding a suitable view and se-
lecting a rectangular region around the area of interest. Re-
peating that process multiple times allows us to isolate the
points corresponding to the park benches easily with a small
number of mouse clicks.

The resulting manual selections can be used as input to
ParaView processing pipelines. For example, in Figs. 2(c)-
2(e) we show how to individually annotate and measure the
bench dimensions. With the bench points isolated, we run
the wrapped PCL Euclidean Clustering filter to augment
the points with a scalar representing the cluster groupings.
Next, we fit oriented bounding boxes to the individual bench
clusters using ParaView’s Oriented Bounding Box filter.

We note that the process of iteratively isolating points
can be used for data exploration as well. For example, Par-
aView facilitates interactive computation of point attribute
histograms, which can be particularly useful when study-
ing discriminative features for object recognition. Further,
data can be accessed in spreadsheet views, e.g., to extract
GPS information, or exported in CSV file format for further
processing by another tool (e.g., MATLAB).

3.3. Object segmentation

Segmentation of point clouds has recently gained con-
siderable research interest (e.g., [06]). As our second usage
example, we present a simple segmentation problem, based
on the table scene. This example illustrates how a typical
segmentation workflow can be designed and explored inter-
actively in ParaView. Given the table scene shown in Fig.
3(a), the objective is to 1) segment all objects on the table,
2) measure the height of each object point relative to the ta-
ble surface and 3) add that information as an attribute array
to the point cloud. We use PCL’s RANSAC plane fitting

http://www.blender.org
http://www.blensor.org

p=leyzrgb

p=[zyzrgbal,a {01}

(a) Kinect data (b) RANSAC plane fitting

p=lzyzrgba;aj]a; R

(c) Height from plane

p=lzyzrbga;ajaac’

| Bounding box

(d) Clustered

(e) Boxed

Figure 3. Illustration of the pipeline and corresponding outputs of the segmentation example of Sect. 3.3. The figure further shows that
points p are augmented by attributes a;, a; and aj, as we move forward in the pipeline (without having to duplicate the clouds).

implementation as well as PCL’s Euclidean clustering, both
wrapped as VTK filters, as the algorithmic core of the ex-
ample.

Our first step is to remove all the points that lie on the
wall behind the table. We can use the RANSAC segmenta-
tion algorithm with a plane model to find inlier points. The
algorithm, wrapped as the Fit Plane filter, passes through
its input point cloud and adds a new (binary) attribute a; €
{0, 1} to each point where a value of "1’ signifies a model
inlier and °0’ signifies an outlier. The point cloud can be
visualized in ParaView with colors assigned to points based
on the value a;. The distance-to-model threshold parame-
ter for RANSAC fitting can be conveniently adjusted in the
property panel of ParaView. Through visual inspection, we
can determine that a distance-to-model threshold of 10 cen-
timeters will robustly label all of the wall points as inliers,
including points that lie on the surface of a picture frame
that juts out from the wall by several centimeters. Tuning
this parameter would be less efficient without an interactive
filter execution environment.

To actually remove the wall from the point cloud, we ap-
ply ParaView’s Threshold Points filter. This filter is a pass-
thru filter that takes a point attribute and a threshold range,
similar to PCL’s own pass-thru filter. We use this filter to
extract all points satisfying a; = 0, i.e. the outlier points
that do not belong to the plane model representing the wall.

The next most prominent planar surface is the table-
top, thus another application of the Fit Plane filter results
in segmentation of the table points. This time, we’ll use
ParaView’s Programmable Filter to implement an extended
version of the filter. Technically, the Programmable Filter
takes a Python code snippet and executes it. The Python
code has access to the input data object, and can access the
points and point attributes as numpy arrays. The VTK data
array is compatible with numpy arrays so that the data may
be accessed directly without any additional copying step. In
Python snippet 1, we have implemented a Programmable
Filter that executes 1) the RANSAC plane fitting, then 2)
queries the filter for the origin and normal of the best fit-
ting plane model and 3) computes the signed distance to the

Python example 1 Distance to RANSAC plane model

Run PCL RANSAC using plane model with 1 cm tolerance 1
= vtk.vtkPCLFitPlane ()

.SetDistanceThreshold (0.01)

.SetInput (input)

f.Update ()

origin = f.GetPlaneOrigin () 6
normal = f.GetPlaneNormal () 7

Hh o b e

Compute signed distance to the plane 9
dist = numpy.dot (input.points - origin, normal) 10

Flip the sign if needed (dot normal with Y axis) 12
if numpy.dot (normal, [0,1,0]) > O: 13
dist »= -1.0 1

Pass thru the RANSAC filter output and append 16
the distance to plane attribute to the points 17
output.ShallowCopy (f.GetOutput ()) 18

output.pointdata.append(dist, ’dist_to_plane’) 19

plane for each point in the input cloud using numpy array
routines. Eventually, the input point cloud is passed through
to the output using VTK’s shallow copy semantics and the
signed distance-to-plane scalar a; € R is added to each
point as a new point attribute. ParaView renders the point
cloud colored by that attribute, as shown in Fig. 3(c).

Applying the Threshold Points filter based on the signed
distance-to-plane attribute a; allows for extraction of points
within a certain distance range, i.e. a; € [0.01 0.3], relative
to the table surface.

Since objects are now well isolated, we execute PCL’s
Euclidean clustering algorithm, wrapped as a VTK fil-
ter, to augment the points by a cluster identifier attribute
ax € {0,..., N}, where 0 is assigned to points that do not
meet the clustering criteria, and values 1 through V identify
points belonging to the different clusters. The output of the
clustering step is visualized in ParaView with points colored
by their cluster index as shown in Fig. 3(d). In a final step,
we exploit the Oriented Bounding Box filter to compute an
oriented bounding box for each distinct cluster.

Python snippet 2 shows how the entire processing
pipeline described in this section can be applied to a point
cloud in a batch-processing manner.

Python example 2 Reusability

Fit wall points and remove them 1

PCLFitPlane (DistanceThreshold=0.1)

ThresholdPoints (Scalars='ransac_index’, 3
ThresholdRange=[0,0]) 4

Fit plane to table and measure point height 6
ProgrammableFilter (Script=readFile (
dist_to_plane_filter.py’)) 8

Extract points within 30 cm of the tabletop 10
ThresholdPoints (Scalars='dist_to_plane’, 1
ThresholdRange=[0.01, 0.3]) 12

1
Cluster remaining points 14
PCLEuclideanCluster (ClusterTolerance=0.3, MinSize=400) |

3.4. Parallelization

In our final usage example, we demonstrate how we can
leverage ParaView’s parallelization capabilities to reduce
execution time of computationally intensive filters. Par-
aView is natively a parallel visualization tool. Though it
may be used as a serial application, it is designed as a
client/server application where the serial client connects to
an MPI enabled, multi-process server. In the client/server
configuration, all readers and filters are instantiated on the
server. A complete instance of the filter pipeline exists on
each server process, and each process executes the pipeline
on a piece of the whole dataset. ParaView supports paral-
lel rendering, where the composited image is delivered to
the client, or client side rendering, where the geometry is
collected and delivered to the client.

We note that certain PCL algorithms include support
for OpenMP vectorization that scales up to the number of
processors on a single machine. In contrast, ParaView’s
process-parallel approach, using MPI, has been shown to
be effective from multi-core single machines up to super-
computer scales. This also has the advantage that existing
serial algorithms can potentially benefit from paralleliza-
tion without being refactored. Both paralelliatzion strate-
gies have benefits and even a hybrid approach is sometimes
warranted.

To illustrate parallelization, we chose PCL’s surface nor-
mal estimation algorithm as an example. In our case, the
algorithm is wrapped as a VTK Surface Normal Filter that
computes a normal estimate at each point of the whole city
scene, part of which is shown in Fig. 4(a). For visual-
ization, we compute (using numpy) the angle between the
surface normals and the z-axis and color the points by the
value of that attribute. Fig. 4(c) shows a zoomed-in view of
the curbs next to the street, for different normal estimation
neighborhood radii, demonstrating that the added attribute
is effective for visualizing surface planarity.

To facilitate parallelization of algorithms that require
neighborhood information, ParaView supports the notion of

ghost points. Ghost points are shared, or duplicated points
located at partition boundaries. They are owned by one
processes and duplicated on one or more other processes.
Without ghost points, algorithms such as outlier removal or
normal estimation, would inevitably yield incorrect results
for points at partition boundaries. The pv-meshless plugin*
for ParaView provides a point cloud partitioning filter that
uses the Zoltan library [3] to perform data redistribution and
balancing, and also performs ghost point generation with a
specified boundary radius. Fig. 4(b) shows the city scene,
colored by process IDs using the partitioning obtained from
pv-meshless, as well as the generated ghost points.

As a reference for the parallelization experiments, non-
parallel execution of surface normal estimation with a 10
centimeter neighborhood search radius takes ~ 190 sec-
onds on our Intel Xeon Dual Quad-Core test system, run-
ning Linux 2.6.32. We partitioned the point cloud with a
10 centimeter ghost point boundary which is the minimum
overlap that we need to have to avoid boundary issues with
a 10 centimeter search radius. Fig. 5 shows the execution
time of the Surface Normal Filter as a function of the num-
ber of processors on a single machine. Execution times are
averaged over ten runs of the experiment. As we can see,
performance gains are close to what we expect in the opti-
mal case with a speedup of ~ 6x using all eight processors.
Fully tracking down the source of the overhead that leads
to the gap to optimal scaling is tricky and can have multi-
ple roots: Among those, we highlight that as the number
of partitions increases, the shared ghost points increase the
total overall number of points that are filtered. Using eight
processors leads to =~ 10% increase in the total number of
points for instance. In addition, the number of ghost points
depends on the point density along the partition boundaries
which can differ significantly in case of LIDAR data. Apart
from that, Fig. 5 does not include I/O time. While paral-
lel I/O is generally possible within ParaView, we did not
explore that direction in this example. However, once data
is partitioned (e.g., using pv-meshless), it can be saved in a
format compatible with one of ParaView’s existing parallel
I/O readers.

For comparison, Fig. 5 additionally shows a similar
execution time vs. number-of-processors plot for running
VTK’s Extract Geometry Filter on the point cloud. The fil-
ter is configured to extract all points in the city scene that
lie within any of the six bench bounding boxes, see Fig.
2(d), that were produced in the cloud annotation example
of Sect. 3.2. The algorithm implemented by the Extract
Geometry filter works on a single point at a time and does
not require point neighborhood information. Thus it qual-
ifies for immediate parallelization, without any ghost point
requirements. In fact, we ran the same partitioning, except
setting the boundary width to zero. From Fig. 5, we see

4https://hpcforqe.orq/projects/pvfmeshless

 https://hpcforge.org/projects/pv-meshless

Ghost points

(b) Partitioning

(a) City scene

30 cm radius

(c) Varying search radius for normal estimation

Figure 4. Illustration of (b) Point cloud partitioning for eight processors with ghost points at partition boundaries; (c) Zoomed-in view of
the street curbs with points colored by the angle between the surface normals and the z-axis at various normal estimation search radii.

Point in bounding box check
Measured 180
- == 2 ‘Optimal 160
25 : = 140
g 120
=

S 100
['4

15 80 N
10 60 N

= 40 =

Normal estimation

Measured
- - = = Optimal

Runtime [s]
n
8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Processors # Processors

Figure 5. Execution time of strong scaling experiments demon-
strating 1) point inside bounding box extraction and 2) surface nor-
mal computation.

that the measured execution time is even closer to the opti-
mal case for this experiment which can be explained, to a
large part, by the missing ghost points.

While many PCL algorithms produce valid results using
ghost points, others require more sophisticated implemen-
tations to work in parallel. An example of that is Euclidean
clustering: while cluster results are correct within each pro-
cess piece, clusters spanning partition boundaries need to be
joined using inter-process communication. Although, we
did not implement an example of that, ParaView provides
high-level communication routines built upon MPI that are
available and make such implementations more straightfor-
ward.

4. Discussion

In this work, we have shown that the combination of Par-
aView and PCL leads to a unified framework for interactive
data exploration, visualization as well as parallel data pro-
cessing. The close integration with Python and numpy fur-
ther facilitates rapid prototyping, while maintaining com-
putational performance. We believe that this combination
provides a natural integration of the strengths of ParaView
with the strengths of PCL and lowers the barrier for the de-
velopment of novel point cloud processing algorithms.

While the proposed approach is effective in targeting the
issues we mentioned in the introduction, it is not designed
for real-time processing of point clouds.

We further highlight that in addition to ParaView’s fil-
tering pipeline, which we exploited in this work, ParaView

provides a framework for developing experimental render-
ing algorithms using GPU shaders. On our test system, we
have successfully visualized point clouds of up to 20 mil-
lion points with interactive frame rates, however, visualiz-
ing even larger clouds might require the use of GPU shaders
at some point.

Finally, we note that the PCL plugin for ParaView, im-
plementing the filters presented in this work and others, is
available to the community in binary and source code form,
to be downloaded at: http://www.paraview.org/
Wiki/ParaView/PCL_Plugin

References

[1] J. Ahrens, B. Geveci, and C. Law. ParaView: An end-user
tool for large data visualization. In C. Hansen and C. Johnson,
editors, The Visualization Handbook, pages 717-732. Elsevier
Academic Press, 2005. 1

[2] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, and J. Favre.
Remote large data visualization in the Paraview framework.
In EGPGV, 2006. 1

[3] K. Devine, E. Boman, E. Heaphy, B. Hendrickson, and
C. Vaughn. Zoltan data management services for parallel dy-
namic applications. Computing in Science and Engineering,
4(2):90-97, 2002. 5

[4] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion,
B. Geveci, M. Rasquin, and K. Jansen. The paraview copro-
cessing library: A scalable, general purpose in situ visualiza-
tion library. In LDAV, 2011. 1

[5] M. Gschwandtner, R. Kwitt, and A. Uhl. Blensor: Blender
sensor simulation toolbox. In ISVC, 2011. 3

[6] F. Moosmann, O. Pink, and C. Stiller. Segmentation of 3D
Lidar data in non-flat urban environments using a local con-
vexity criterion. In IV, 2008. 3

[7]1 R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). In ICRA, 2011. 1

[8] W. Schroeder, K. Martin, and B. Lorensen. Visualization
Toolkit: An Object-Oriented Approach to 3D Graphics. Kit-
ware Inc., 4th edition, 2008. 1

[9] A.Squillacote. The Paraview Guide. Kitware Inc., 3rd edition,
2008. 1

http://www.paraview.org/Wiki/ParaView/PCL_Plugin
http://www.paraview.org/Wiki/ParaView/PCL_Plugin

