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ABSTRACT

In this paper, we introduce a Goodness-of-Fit test for the Multivari-

ate Exponential Power (MEP) distribution, a multivariate extension

of the Generalized Gaussian, which has recently gained considerable

interest as a model for wavelet coefficients in the context of color im-

age retrieval and spread-spectrum watermarking. We present a size

and power study of this test and show Goodness-of-Fit results for

wavelet coefficients of natural and texture images from various pop-

ular databases.

Index Terms— Multivariate modeling, Hypothesis testing,

Wavelet transform

1. MOTIVATION

In the last few years, the MEP distribution has gained considerable

interest in the community as a multivariate model for DWT coeffi-

cients of subbands on the same decomposition level and across color

channels. In [1], Verdoolaege et al. exploited the MEP in the con-

text of texture image retrieval, demonstrating a considerable retrieval

performance increase compared to a marginal subband model, such

as the Generalized Gaussian. In [2], we demonstrate similar perfor-

mance improvements in the context of spread-spectrum watermark-

ing where the MEP model proved particularly useful in capturing

the association structure among DWT coefficients of different color

channels. Formally, the MEP distribution is a particular case of the

Kotz-type distribution, which in turn belongs to the family of ellip-

tical distributions [3]. The probability density function (pdf) of the

n-dimensional MEP distribution is given by
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with shape parameter β > 0, location parameter (vector) µ ∈ R
n

and positive definite (symmetric) n × n dispersion matrix Σ. As β
goes to infinity, the MEP model tends to a multivariate generalization

of the uniform distribution, whereas for β = 0.5 we obtain a mul-

tivariate generalization of the Laplace distribution for instance. For

β = 1, the MEP model reduces to the Multivariate Normal (MVN).

Further properties can be found in [3]. In case of modeling DWT co-

efficients of natural (or texture) images, µ = 0 is a descent assump-

tion and we adhere to the notation X ∼ MEPn(β,Σ) to signify that

a n-dimensional random vector X follows such a MEP distribution.

The MEP model is of particular interest in any application field

where the assumption of a MVN distribution is either too rigorous
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or a too coarse simplification. Nevertheless, the reasoning for em-

ploying the MEP model is generally heuristic and, in the context of

wavelet coefficient modeling, relies on the argument that the coef-

ficients are highly non-Gaussian and exhibit leptokurtic histograms.

Since the adaption of statistical tools to check the Goodness-of-Fit

(GoF) of the MEP distribution is lagging behind so far, practitioners

rely on visual inspection of the fit. This strategy, however, is only

possible in one or two dimensions and can be quite misleading as

well, especially due to the problem of choosing a reasonable bin size

in case n = 2. To formally state the problem we tackle in this work,

let D = {x1, . . . ,xN} be a collection of observations xi ∈ R
n,

e.g. wavelet coefficient vectors. Our objective is to test the hypothe-

sis H0 : X ∼ MEPn(β,Σ) against a general alternative (H1). The

contribution of this work is a novel statistical tool to perform this

hypothesis test. This eventually allows to quantify the assumption of

a MVN or MEP model for wavelet coefficients. Methodologically,

our approach is strongly influenced by the GoF test for multivariate

normality of Smith and Jain [4] as well as an idea from the field of

multivariate two-sample hypothesis testing (cf. [5]).

The remainder of this article is structured as follows: In Sec-

tion 2, we discuss prior work on a three-stage GoF strategy and then

introduce the main ingredients of our approach in Section 3. In Sec-

tion 4, we present our experiments including a size and power study

and some test results on real-world data; we conclude with Section 5.

2. ADAPTION OF PRIOR WORK

To the best of our knowledge, there exists no published GoF test for

the MEP distribution, although Gomez et al. [3] sketch a possible

test strategy in their seminal paper on the MEP distribution. Since,

the MEP model is a particular type of elliptical distribution it admits

a stochastic representation, i.e. if X ∼ MEPn(β,Σ) then

X ∼ RAT
U (2)

where the random vector U ∈ R
n is uniformly distributed on the

unit-sphere in the n-dimensional Euclidean space, A is an upper

triangular matrix such that Σ = ATA, R is distributed according

to the pdf
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and R is independent of U . Based on this representation and the

moments of R (see [3]), the first stage of the GoF test is to check

whether the zi = (xT
i Σ̂

−1
xi)

β̂ (β̂ denotes an estimate of β, see

Section 3.1) follow a Gamma distribution with shape parameter 2
and scale parameter n/2β̂, since Z = (XT

Σ
−1X)β ∼ Γ(2, n/2β).

We implement this check by means of a Chi-Square GoF test. In the

second stage, we have to test whether the transformed sample

ui = yi/‖yi‖ with yi = Σ̂
− 1

2 xi, i = 1, . . . , N (4)
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Fig. 1. Illustration of the two variants of our proposed GoF test.

is uniformly distributed on the unit sphere in R
n (Σ̂ denotes an es-

timate of Σ). We perform this task by means of a Rayleigh test for

uniformity on the sphere, originally proposed by Mardia and Rupp

[6]. In the last step, we have to test if the random variable R is in-

dependent of the random vector U . For that purpose, we employ a

recently proposed test by Gretton et al. [7].

At that point, we notice that each stage strongly depends on the

particular type of test that is used. However, the most crucial part is

the fusion step where we have to combine the test outcomes of each

stage into a final test result. Since no fusion strategy is given in [3],

we choose the pragmatic (yet, rather strict) way to reject the overall

null-hypothesis H0 in case just one stage shows evidence against its

null-hypothesis. In Section 4.1, we conduct a size and power study

of this test (which, to the best of our knowledge, has not been done

so far) and compare it to our proposed approach.

3. INGREDIENTS OF OUR NEW APPROACH

Basically, we take the GoF approach of Smith and Jain [4] to test

multivariate normality and adapt the relevant parts. The components

of the test procedure are outlined in Fig. 1, where part (a) shows

the Monte-Carlo variant of the test which is based on a Monte-Carlo

estimate of the p-value and part (b) shows the second variant which

relies on the asymptotic distribution of the test statistic, given H0 is

true. In our setup, null-hypothesis is that the sample D1 is drawn

from a MEP distribution with parameters β and Σ. As we can see

from Fig. 1, the critical parts of the GoF test are the estimation part,

the sampling part and the selection of a suitable test statistic.

3.1. Parameter Estimation

Gomez et al. [3] mention moment matching as a suitable param-

eter estimation method. In [1], Verdoolaege et al. propose to use

Maximum-Likelihood (ML) estimation. Moment-matching is de-

scribed in [2]. Due to space limitations, we only focus on the ML

case in the following.

In order to determine ML estimates for β and Σ, we first formu-

late the log-likelihood expression L(β,Σ,S) of observing a random

sample S = {z1, . . . ,zN} of realizations of N i.i.d. copies of a

random variable Z ∼ MEPn(β,Σ) as
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with vi ≡ zT
i Σ

−1zi. We then determine the partial derivatives of

Eq. (5) w.r.t. β and Σ
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with C = log(2) and ψ denoting the Digamma function. Setting the

right-hand side of Eq. (7) to zero leads to
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β

N
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after some straightforward manipulations. Eq. (8) now allows to em-

ploy the method of successive approximation, starting with Σ̂
(1)

=
I until convergence is reached. Since we need to estimate β and Σ

simultaneously, we solve ∂/∂βL = 0 in each iteration of the succes-

sive approximation algorithm by using bisectioning in the interval

[0.1, 5]1, starting with β̂(1) = 0.5. Convergence is reached when
∑

i

∑

j |σ̂
(k)
ij − σ̂(k−1)

ij |+ |β̂(k)− β̂(k−1)| < ǫ, where σ̂
(k)
ij and β̂(k)

denote the estimates in the k-th iteration.

3.2. Sampling

To draw a random sample from a MEP distribution with desired pa-

rameters β and Σ, we can rely on Eq. (2). First, we draw a random

sample u1, . . . ,uN from the uniform distribution on the unit sphere

in R
n. We then perform a Cholesky decomposition of Σ to obtain

AT and generate another random sample r1, . . . , rN from the dis-

tribution given in Eq. (3). Eventually, we use yi = riA
Tui to

generate a MEP random sample y1, . . . ,yN . Let us review these

steps in more detail: To obtain ui, we use the fact that the MVN dis-

tribution is radially symmetric. Drawing a random vector ui from a

standardized MVN distribution N (0,1) and normalizing each vec-

tor element by (
∑

j u
2
ij)

1/2 consequently gives the desired result.

The process of generating the random sample r1, . . . , rN is slightly

more involved, though. In order to use the classic inversion method,

we first determine the quantile function F−1
R (i.e. the inverse cdf)

corresponding to the pdf in Eq. (3) as

F−1
R (u;β) = 2

1

2β
[

P−1
u (n/2β, 1− u)

]
1

2β , u ∈ [0, 1] (9)

where Pu(a, x) denotes the regularized (upper) incomplete Gamma

function. We can then generate ri using ri = F−1
R (ui;β) with ui

drawn from a uniform distribution on [0, 1].

3.3. The Test Statistic

To find a suitable test statistic, Smith and Jain [4] borrow a test strat-

egy from the field of two-sample hypothesis testing, where the ob-

jective is to test whether two samples D1 = {x1, . . . ,xN} and

D2 = {y1, . . . , yN} stem from the same underlying population

without making any assumptions about the distribution family. The

basic principle is to use some statistic of the pooled sample Dp =
{D1,D2},M := |Dp| = 2N with known distribution under the

null-hypothesis (of equal underlying population) to perform the test.

In our context, the sample D1 represents the collection of origi-

nal observations, whereas the sample D2 is drawn from the assumed

MEPn(β,Σ) distribution with parameters fitted on the basis of D1.

1Assuming the true root β is in [0.1, 5] is a reasonable assumption, at
least for wavelet coefficients (cf. [1]).
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Fig. 2. Illustration of the two-sample hypothesis test proposed by

Henze [8], based on the number of nearest neighbor coincidences

for k = 3.

In [4], the assumed distribution is a MVN distribution and the au-

thors rely on a two-sample test based on an Euclidean Minimum

Spanning Tree. In this work, we rely on a similar strategy originally

proposed by Henze [8]. The approach is based on the computation of

the number of nearest neighbor (NN) coincidences, computed on Dp

(using the Euclidean distance). A visualization of this idea is shown

in Fig. 2, where H signifies the distribution of D1 (marked as blue

squares) andG signifies the distribution D2 (marked as red discs). In

both examples, we illustrate computation of the test statistic T , only

considering two elements of each sample. The line of reasoning here

is as follows: Given that the null-hypothesis (i.e. H0 : H = G) is

true, we expect the number of NN coincidences to be low, cf. Fig.

2(b). On the other hand, if H0 is false, the number of NN coinci-

dences will be high, cf. Fig. 2(a). We can apply the same reason-

ing in our context, only that D2 is now a random sample as defined

above.

For a formal description of the test statistic, let m : Dp →
{1, 2} denote a function returning the sample membership of an el-

ement zi of the pooled sample Dp and let NN i(r) denote the r-th

nearest neighbor of zi. The test statistic Tk,M for considering k
nearest neighbors is

Tk,M =
1

Mk

M
∑

i=1

k
∑

r=1

1i(r) (10)

where 1i(r) is 1 in case m(zi) = m(NN i(r)) and 0 else. Ac-

cording to Schilling [5], we have the asymptotic (i.e. M → ∞)

result that in case H0 is true, the term φ =
√
Mk · (Tk,M −

µTk,M |H0
)/σTk,M |H0

follows a standard Gaussian distribution

with µTk,M |H0
= λ2

1 + λ2
2 and σ2

Tk,M |H0
= λ1λ2 + 4λ2

1λ
2
2(1 −

C(2k, k)2−2k), where C(a, b) denotes the binomial coefficient (i.e.

a choose b) and λi = N/M (i.e. in our case λ1 = λ2 = 0.5). Based

on these expressions, it is straightforward to compute a p-value as

p = P(T ∗ ≥ T |H0) = 1 − FT (φ), where FT denotes the cdf of

the standard Gaussian distribution. Given a fixed significance level

α, the null-hypothesis H0 is rejected in case p < α.

Nevertheless, we have to bear in mind that the sampling proce-

dure to generate D2 introduces some bias. This is obvious, since

sampling is based on MEP parameters fitted on the basis of D1. The

critical issue is that the NN coincidences test relies on the assump-

tion of independent samples. Consequently, either size or power will

be affected. To circumvent this problem, we follow the approach of

[4] and estimate the critical region of the test using a Monte-Carlo

approach, illustrated in Fig. 1(a). The iteration in the right branch

of Fig. 1(a) is repeated W times and the p-value is estimated as

p̂ = (#{Ti ≥ T ∗} + 0.5)/(W + 1). We denote the test variant

based on Monte-Carlo p-value estimation as the Monte-Carlo vari-

ant and the test based on the asymptotic normality of Tk,M as the

Normal variant.

α N
Estimated α̂

Gomez et al. [3] Monte-Carlo Normal

0.01
200 0.030 0.002 0.022
400 0.028 0.001 0.002
800 0.014 0.001 0.018

0.05
200 0.084 0.022 0.063
400 0.118 0.012 0.014
800 0.108 0.053 0.069

0.10
200 0.194 0.044 0.132
400 0.212 0.026 0.048
800 0.196 0.084 0.152

Table 1. Estimated size/level α̂ for the GoF test sketched by Gomez

et al. in [3] as well as the two variants of our proposed GoF test,

w.r.t. various levels of α and sample size N .

4. EXPERIMENTS

In order to assess the quality of the proposed GoF test(s) and our

implementation of the test by Gomez et al., we conduct a study

on the size, i.e. the test’s probability of falsely rejecting H0, and

power of the test. Regarding the experimental methodology, both

size and power are evaluated by means of a Monte-Carlo simula-

tion with O = 500 iterations for three-dimensional data (not to be

confused with the Monte-Carlo variant of our test).

4.1. Size and Power Study

In each iteration of the Monte-Carlo simulation, we draw a random

sample from MEP3(0.5, I) and determine the percentage of H0 re-

jections. Since the sample does actually stem from a MEP distri-

bution, this percentage gives us an estimate α̂ for the test level/size.

The size estimates for our implementation of the Gomez et al. test

are obtained using the fusion strategy outlined in Section 2. Regard-

ing the Monte-Carlo variant of our GoF test, we set the number of

iterations W to 1000. Table 1 lists the estimated size/level α̂ for

different sample size N ∈ {200, 400, 800} and desired levels of

α ∈ {0.01, 0.05, 0.1}. For the GoF test of Gomez et al., we observe

that α̂ is above the desired level α in all cases. Regarding the two

variants of our proposed GoF approach, we see that the Monte-Carlo

test is quite conservative, i.e. the percentage of false positives is al-

ways below the desired level. However, in case of the Normal test,

the situation is different. Except forN = 400, the rejection rates are

always slightly above the desired level.

To assess the power of the GoF tests, we sample from a two-

component mixture of MEP distributions, i.e. π1 ·MEP3(β1,Σ1)+
π2 ·MEP3(β2,Σ2), π1 + π2 = 1. We start from equal parameters

β1 = β2 = 0.5,Σ1 = Σ2 and then gradually increase the shape

parameter β2 of the second mixture component. We refer to this

scenario as testing against shape alternatives, presumably one of the

most common scenarios in the context of wavelet coefficient mod-

eling. The dispersion matrix Σ1 is chosen to resemble a real-world

case and the mixture weights are π1 = π2 = 0.5. For each value

of β2 (and N ), we perform O Monte-Carlo iterations and determine

the number of H0 rejections.

Figure 3 shows the corresponding power plots. In case of the

test by Gomez et al., we observe that our fusion strategy leads to

reasonable power, even at moderate sample size. Regarding the two

variants of our proposed test, both exhibit reasonable power as well

with the Normal variant showing higher power again at moderate

sample size. This can be explained by referring to Table 1, where the

Normal variant is less conservative than the Monte-Carlo variant.
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Fig. 3. Power plots (α = 0.05) for the three GoF variants. The observations are sampled from a two-component MEP mixture where the

shape parameter β2 is gradually moved away from the shape parameter β1 = 0.5 of the first mixture component.

Model
Database

Stex Vistex (full) Outex UCID

MEP3(β,Σ) 25.09 35.13 11.15 56.18
MVN (i.e. β = 1) 57.13 73.19 39.66 98.97

Table 2. H0 rejection rates for coefficients of (three level) DWT

decomposed grayscale images at α = 0.05.

4.2. Testing DWT Coefficients of Texture and Natural Images

We eventually turn to an actual application of the GoF test. We

use our Normal test variant to check the GoF of a MEP3 model

for (horizontal,vertical,diagonal) DWT subband coefficients (using

a three level decomposition with CDF 7/9 filters) of several database

images. We use all images of the Stex2, Vistex3, Outex4 and the

UCID database5. To obtain equal power for each DWT decomposi-

tion level, we uniformly sample 500 coefficients from each subband

and set α = 0.05. In addition to full estimation of both MEP param-

eters, we perform a GoF test for the fix choice of β = 1, i.e. MVN,

for comparative reasons. The H0 rejection rates are listed in Table

2. Compared to the MVN model, the MEP model is obviously the

more suitable choice to capture wavelet coefficients statistics. The

GoF results show a good fit for texture images and a slightly worse

fit for natural images. Considering the simplicity of the MVN dis-

tribution (in terms of estimation complexity for instance), it is worth

noting that in some cases the assumption of multivariate normality

is actually not too coarse.

5. CONCLUDING REMARKS

We have introduced a novel statistical test to check the GoF of the

MEP distribution, a popular multivariate model for DWT subband

coefficients. We have further proposed a possible implementation of

a prior GoF strategy and elaborated on MEP parameter estimation

as well as sampling issues. MATLAB and C implementations of

the tests will become available at http://www.wavelab.at/

sources to foster reproducible research and make these tools avail-

able to the community.

Our size and power study demonstrates reasonable power of all

2Salzburg Textures, Online: http://www.wavelab.at
3MIT Vision Textures, Online: http://vismod.media.mit.edu
4Univ. of Oulo Textures, Online http://www.outex.oulu.fi
5Online: http://vision.cs.aston.ac.uk/datasets/UCID

proposed test strategies against shape alternatives and shows that the

Normal variant exhibits controlled behavior in terms of test size.

This is an attractive property, since the Monte-Carlo variant is far

more computationally expensive. Our implementation of the GoF

test by Gomez et al. exhibits remarkable power as well. However,

we highlight that the employed fusion strategy is still somewhat ar-

bitrary, whereas our proposed test(s) produce a true p-value and the

notion of a significance level has a natural interpretation. We believe

that efficient GoF tests for the MPE distribution are a valuable tool

for many multivariate modeling tasks.

6. REFERENCES

[1] G. Verdoolaege, Y. Rosseel, M. Lambrechts, and P. Scheunders,

“Wavelet-based colour texture retrieval using the Kullback-

Leibler divergence between bivariate Generalized Gaussian

models,” in Proceedings of the IEEE International Conference

on Image Processing (ICIP ’09), Cairo, Egypt, Nov. 2009, pp.

265 – 268.

[2] R. Kwitt, P. Meerwald, and A. Uhl, “Color-image watermarking

using multivariate power-exponential distribution,” in Proceed-

ings of the IEEE International Conference on Image Processing

(ICIP ’09), Cairo, Egypt, Nov. 2009, pp. 4245–4248.

[3] E. Gomez, M-A. Gomez-Villegas, and J. M. Marin, “A multi-

variate generalization of the power exponential family of distri-

butions,” Communications in Statistics – Theory and Methods,

vol. 27, no. 3, pp. 589–600, 1998.

[4] S. P. Smith and A. K. Jain, “A test to determine the multivariate

normality of a data set,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 10, no. 5, pp. 757–761, Sept.

1988.

[5] M. F. Schilling, “Two-sample tests based on nearest neighbors,”

Journal of the American Statistical Association, vol. 81, no. 395,

pp. 799–806, Sept. 1986.

[6] K. V. Mardia and P. Rupp, Directional Statistics, John Wiley

and Sons Ltd., 2000, 2nd ed.

[7] A. Gretton, K. Fukumizu, C.H. Teo, L. Song, B. Schölkopf, and

A.J. Smola, “A kernel statistical test of independence,” in Pro-

ceedings of the International Conference on Advances in Neural

Information Processing Systems (NIPS’07), Vancouver, Canada,

Dec. 2007, pp. 585–592.

[8] N. Henze, “A multivariate two-sample test based on the number

of nearest neighbor type coincidences,” Annals of Statistics, vol.

16, no. 2, pp. 772–783, June 1988.


