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Abstract—This article contemplates the framework of prob-
abilistic image retrieval in the wavelet domain from a com-
putational point of view. We not only focus on achieving high
retrieval rates, but also discuss possible performance bottlenecks
which might prevent practical application. We propose a novel
retrieval approach which is motivated by previous research work
on modeling the marginal distributions of wavelet transform
coefficients. The building blocks of our work are the Dual-Tree
Complex Wavelet Transform and a number of statistical models
for the coefficient magnitudes. Image similarity measurement is
accomplished by using closed-form solutions for the Kullback-
Leibler divergences between the statistical models. We provide
an in-depth computational analysis regarding the number of
arithmetic operations required for similarity measurement and
model parameter estimation. The experimental retrieval results
on a widely-used texture image database show that we achieve
competitive retrieval results at low computational cost.

Index Terms—Texture Image Retrieval, Wavelets, Kullback-
Leibler Divergence

I. INTRODUCTION

S INCE the amount of digital image data in multimedia
databases is constantly growing, we face an increasing

need for systems which allow content-based image retrieval
(CBIR) through searching by example. The fields of appli-
cation range from searching databases of natural images to
images of textures or even medical content. The objective is
to find the K � L most similar images to a given query
in a database of L candidate images, according to some
similarity criterion. A typical image retrieval system consists
of two elementary building blocks: the feature extraction (FE)
block and the similarity measurement (SM) block, which are
illustrated in Fig.1.
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Fig. 1. Schematic diagram of an image retrieval system.
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During feature extraction, a set of image features (sig-
natures) is computed from the image representation in the
pixel domain. This step usually comprises several intermediate
steps such as preprocessing, image transformation or statistical
model estimation. The ultimate aim is to design a set of image
descriptors which can unambiguously characterize the content
of an image. This fact implies an important chain of relations:
on the one hand, the feature extraction part strongly depends
on the type of image content, since buildings or objects for
example will most likely require a different set of image
features than textures or medical content. On the other hand,
similarity measurement consequently depends on the type of
image features which establishes the strong connection of both
building blocks. Comparing image signatures obtained from an
edge-detection system and texture features for example with
the same similarity function could be suboptimal for many
databases. In our work, we particularly focus on images which
exhibit texture characteristics. Since most publications on (tex-
ture) image retrieval solely aim at an improvement in retrieval
accuracy and often neglect computational issues, solutions
which are both computationally inexpensive and minimize the
retrieval error are rare. In a probabilistic framework, where
each image is represented by some statistical model and image
similarity is measured by a function of these models, we
have to deal with the trade-off between model complexity and
computational performance. Increasing the model complexity
to better capture image characteristics might lead to higher
retrieval rates on the one hand, but it is very likely that the
computational demand for feature extraction and/or similarity
measurement increases in a similar manner.

We consider two scenarios which impose computational
constraints on particular parts of the retrieval framework.
The scenarios differ in that possible performance bottlenecks
arise at different locations. The first scenario is the classic
retrieval scenario, where the model parameters of all database
images are calculated off-line and new images are added to the
database at a slow rate. Hence, overall runtime performance
is predominantly limited by similarity measurement which
inherently depends on the size of the image database. The
runtime impact of model parameter estimation and image
transformation is of secondary importance since both steps
have to be performed only once (i.e. for each new query). The
second retrieval scenario we discuss here has several facets
and imposes additional requirements on the building blocks
of the retrieval framework. First, we observe situations where
new images arrive at a high rate and have to be stored in
the database. At the same time, image queries are executed.
The computational demand for similarity measurement is still
the primary concern, however the complexity of parameter
estimation becomes an important issue. If the images are
represented in a domain other than spatial, the image trans-
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formation step possibly contributes a significant amount of
additional runtime as well. Other challenging situations occur
when online texture similarity measurement is required, e.g.
when then frames of an image stream have to be matched
to a limited set of query templates. Real-world examples for
that include video-controlled quality assurance in texture man-
ufacturing, or the detection of cancerous tissue during video-
colonoscopy. Computationally expensive parameter estimation
or image transformation can scale up to the limiting factors for
production throughput or complicate the diagnostic process.
In order to cover both retrieval scenarios we need a low-
complexity image transformation, a similarity measure which
exclusively depends on the image model parameters and an
efficient model parameter estimation procedure.

A. Related Work

Related work on the topic of texture image retrieval includes
a huge variety of publications in the last decade. Due to space-
limitations we focus on those approaches which are closely
related to the framework of probabilistic image retrieval. To
the best of our knowledge, the idea of a probabilistic approach
was first introduced by Vasconcelos and Lippman in [1] and
then taken up by several authors in the following years. Our ap-
proach is mainly motivated by their work presented in [2], [3]
as well as the work of Do and Vetterli in [4]. Both approaches
will be used as a reference for our retrieval experiments. In [3],
multivariate Gaussian Mixture Models (MGMM) are used to
model Discrete Cosine Transform (DCT) coefficients obtained
from overlapping sliding windows and Maximum-Likelihood
selection is employed for similarity measurement. In [4],
the pyramidal Discrete Wavelet Transform (DWT) is used to
decompose images and model the detail subband coefficients
by Generalized Gaussian distributions (GGD). A similarity
measure between two images is then computed using a closed-
form solution to the KL-divergence between GGDs. Hence,
the obtained retrieval framework allows efficient similarity
measurement by using the Maximum-Likelihood estimates
(MLEs) of the GGD distribution parameters of each wavelet
detail subband. However, the final similarity measure depends
on the assumption of subband independency which amounts
for a crucial simplification and indicates the trade-off be-
tween model complexity and computational performance. The
effect of assuming independency of the components in the
feature space is covered by Vasconcelos [5] in detail, with
the conclusion that independence has a negative impact on
the retrieval accuracy. In [6], Do and Vetterli present an
extension of the aforementioned probabilistic approach to
achieve rotational invariance. The new statistical model is
based on an overcomplete transform, known as the Steerable
Pyramid [7] and two particular forms of Hidden Markov
Trees (HMT) to capture coefficient dependencies across scales
and orientations. Image similarities are then measured by an
approximation of the KL-divergence between HMTs [8]. A
similar approach which follows the idea of measuring KL-
divergences is presented by Tzagkarakis et. al. [9] using
Symmetric Alpha-Stable distributions (SαS) to model the
wavelet detail subband coefficients. Since there exists no

closed-form solution for the KL-divergence in case of general
SαS distributions, the authors propose to use the characteristic
functions instead of the probability density functions (PDF) to
compute similarities. In [10], this approach is carried forward
to achieve rotational invariance by employing a Steerable
Pyramid approach together with alpha-stable modeling of the
subband coefficients and a Gaussianization procedure to obtain
a closed-form expression for the KL-divergence. Another in-
teresting approach is presented by de Ves et. al [11], where the
wavelet coefficients of the vertical and horizontal DWT detail
subbands are considered as realizations of a bivariate random
vector and the magnitude is modeled by a two-parameter
Gamma distribution. The authors report good retrieval results
using the Stationary Wavelet Transform (SWT, implemented
by the à-trous algorithm) as a substitution for the pyramidal
DWT to get rid of the shift-dependency problem (see Section
II-A). Again, the KL-divergence is then used for similarity
measurement.

B. Contribution
The contribution of this work is split into several parts:

we introduce a novel, probabilistic texture image retrieval
approach in the wavelet domain with the objective to strike
a balance between model complexity and computational per-
formance. In particular, we propose a set of statistical models
for the magnitudes of complex wavelet transform coefficients
which facilitate an easy derivation of closed-form expressions
for the corresponding KL-divergences. By compiling some
results form statistical literature on parameter estimation we
show that model parameters can be estimated in an efficient
manner which perfectly goes with the idea of lightweight
retrieval. To quantify the computational complexity of our
approach, we provide an in-depth analysis of the required
arithmetic operations for the main building blocks as well as
a comparative runtime study. This analysis confirms that our
method facilitates application to scenarios where low compu-
tational cost is a crucial requirement. From the viewpoint of
retrieval accuracy, the experimental results on a widely-used
texture database show higher or at least competitive retrieval
rates compared to previous research works. This is particularly
interesting since our models are less complex than some of the
presented reference approaches.

The remainder of the paper is organized as follows: in
Section II we introduce image representation in the wavelet
domain and the setting of probabilistic image retrieval. We
further discuss statistical models for wavelet transform co-
efficients and present closed-form expressions for the KL-
divergences. Model parameter estimation issues are investi-
gated in Section III, followed by a computational analysis for
the building blocks of our retrieval framework in Section IV.
Experimental results are then shown in Section V and Section
VI concludes the paper with a summary of the main points,
open problems and an outlook on future research.

II. STATISTICAL MODELS AND SIMILARITY
MEASUREMENT

First, we introduce some notational conventions: if not
stated otherwise, we use single indexing for the wavelet sub-
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band coefficients x1, . . . , xN and go without a complete speci-
fication of the concrete subband position in the decomposition
structure. Small boldface letters, such as a denote vectors,
big boldface letters such as A denote matrices. Distribution
parameters are denoted by Greek letters. In order to make
a quantitative statement about the quality of the statistical
models, we perform Chi-Square Goodness-of-Fit (GoF) tests
at the 5% significance level. The number of bins to compute
the Chi-Square test statistic is fixed to 0.3s, where s denotes
the sample standard deviation. This is the setting used in the
software DATAPLOT [12].

A. Image Representation

In the feature extraction step of our work, we leave the
spatial (pixel) domain and work in the wavelet domain instead.
This is motivated by several reasons: first, wavelets are a con-
venient way to obtain a multiscale representation of an image
which closely corresponds to the way the human visual system
processes information [13]–[15]. Second, we assume that this
multiscale representation allows to efficiently capture texture
characteristics by computing wavelet coefficient statistics.
Last, the characteristic shapes of the coefficient histograms
lead to simple statistical models which in turn lead to efficient
similarity measurement. We choose the Dual-Tree Complex
Wavelet Transform (DT-CWT) [16], since it overcomes two
shortcomings of the pyramidal DWT: lack of shift-invariance
and lack of directional selectivity, as is vividly illustrated and
explained in [17]. These shortcomings are particularly relevant
for image analysis purposes. Lack of shift-invariance implies
that singularities at different locations in an image lead to
different representations in the wavelet domain (i.e. different
coefficients). Hence, wavelet coefficients representing an edge
along an object contour are not necessarily large across all
scales which causes ringing artifacts when reconstruction is
done using just the coefficients at a specific scale. Of course,
the perfect reconstruction property guarantees that all artifacts
are canceled when computing the inverse DT-CWT using all
coefficients. The technical reason for the shift-dependency
problem is that the wavelet and scaling filter used to implement
the pyramidal DWT have finite support and the coefficients
are downsampled by two after each decomposition stage. As
a matter of fact, shift-dependency is a severe deficiency for
image analysis. The second shortcoming – lack of directionally
selectivity – is related to the fact that the filters of the DWT
are real functions and are thus supported on both sides of the
frequency axis. Since the 2-D DWT is usually implemented
by separate row- and column filtering (which is equivalent
to using tensor-product wavelets), this causes ambiguities in
distinguishing features oriented along ±45◦. All other features
oriented mostly along the vertical or horizontal direction are
lumped in the vertical and horizontal detail subbands. Since
orientation information can be an important characteristic for
some textures, better directional selectivity is desired. Both
deficiencies are eliminated to a certain extent by using the
DT-CWT at low computational overhead (see Section IV-A).
The basic idea is to use complex wavelets which are composed
of two real wavelets forming an approximate Hilbert transform

pair. Since this construction ensures that negative frequencies
are suppressed, aliasing effects are reduced and thus approx-
imate shift-invariance is guaranteed. Further, a higher degree
of directional selectivity is achieved with six complex detail
subbands at each decomposition stage. The detail subbands
are oriented along approximately ±15◦,±45◦ and ±75◦. A
schematic frequency tiling of the DT-CWT and DWT is shown
in Fig.2 for frequencies w2 > 0.
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Fig. 2. Schematic frequency tiling of the DT-CWT and DWT (w2 > 0).

B. Probabilistic Image Retrieval

We recapitulate some results from probabilistic, maximum
a-posteriori probability (MAP) image retrieval which con-
stitute the basis of our work. For a thorough treatment of
the decision-theoretic details, we refer to [18] and [19]. Let
I1, . . . , IL denote L database images. Each image is repre-
sented by some data vector xi = [xi1, . . . , xid]

T ∈ X := Rd,
where X denotes the feature space and d denotes the feature
space dimensionality. The data vectors are obtained in the
feature extraction block of the retrieval system. We assume
that each image belongs to one of M image classes and that
each class has some associated class PDF pi(x), 1 ≤ i ≤ M .
Further, a variable Y ∈ {1, . . . ,M} signifies the class mem-
bership and P (Y = i) is the prior probability of class i. In
addition, let s : X → {1, . . . ,M} denote a similarity function
which assigns a query feature vector to one of the M image
classes. Minimization of the retrieval error is achieved using
the MAP similarity function

s(xq) = argmax
i

P (Y = i|xq), (1)

where xq denotes the feature vector of an arbitrary query
image Iq and P (Y = i|xq) denotes the posterior probability
of class i given xq . We assume that the elements of an
arbitrary feature vector x are d realizations of i.i.d. random
variables following some parametric PDF p(x|θi), 1 ≤ i ≤M .
Since, under the image retrieval formulation of [3], each image
constitutes its own class (i.e. M = L), the parameter vector
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TABLE I
PERCENTAGE OF REJECTED NULL-HYPOTHESIS FOR A SET OF

STATISTICAL MODELS AND IMAGE REPRESENTATIONS

Scale
Transform Subband Model 1 2 3

DWT Laplace 91.98 68.36 48.13
DWT GGD 38.30 17.51 22.70

DT-CWT Rayleigh 96.99 85.05 54.87
DT-CWT Gamma 62.64 38.26 13.02
DT-CWT Weibull 75.41 40.84 11.93

θi serves to identify the image (class). In case we apply the
Bayes rule to (1) and assume equal priors P (Y = i) = 1/M , it
can be shown that the resulting Maximum-Likelihood selection
rule is asymptotically (i.e. d→∞) equivalent to searching the
minimum of the KL-divergence between the PDF of the query
image model and the PDFs of the candidate image models,
given by

s(xq) = argmin
i

∫
D

p(x|θq) log

(
p(x|θq)
p(x|θi)

)
dx, (2)

with D denoting the domain of p(x|·) [20]. It is thus obvious
that the setup of probabilistic image retrieval strongly connects
the feature extraction and the similarity measurement block.
For computational reasons we favor closed-form expressions
of (2). Otherwise, we would have to resort to the discrete
version of the KL-divergence which requires a reasonable his-
togram binning. Another possible way to compute similarities
when there is no closed-form solution available, is to resort
to Monte-Carlo (MC) simulation. This means that we exploit
the fact that

1

S

S∑
k=1

[log(p(xqk|θq))− log(p(xqk|θi))] (3)

converges to the KL-divergence between p(x|θq) and p(x|θi)
as S →∞. For practical use we generate a random sample of
size S from the query image model p(·|θq) and then compute
(3). Obviously, this procedure is computationally expensive
since S has to be chosen reasonable large to minimize the
impact of the sample size. As a matter of fact, MC simulation
is impractical in a lightweight approach. However, we mention
it here since one reference approaches in our comparative
study comprises a mixture-model with no closed-form KL-
divergence.

C. DWT Detail Subband Models

Several statistical distributions have been proposed in liter-
ature to model the marginal detail subband coefficient distri-
butions of the pyramidal DWT. It is commonly accepted that
the coefficients are highly non-Gaussian, exhibit heavy-tails
and can be accurately modeled by a Generalized Gaussian
distribution [21]. In the remainder of this work, we use the
parametrization of [22], where the PDF of the GGD is given
by

p(x|α, β) =
β

2αΓ(1/β)
exp

(
−
∣∣∣x
α

∣∣∣)β , (4)

with −∞ < x < ∞, α > 0 (scale) and β > 0 (shape).
For β = 2, the GGD is the Gaussian distribution, whereas

for β = 1 we obtain the Laplace distribution [23]. Parameter
estimation will be briefly discussed in Section III. Table I lists
the percentage of rejected null-hypothesis of the Chi-Square
GoF tests when using either Laplace or GGD to model the
marginal coefficient distributions of our database images (see
Section V). The GoF tests confirm, that the GGD should be the
model of choice due to the low percentage of rejected null-
hypothesis. A closed-form expression of the KL-divergence
between two GGDs pi := p(x|αi, βi) and pj := p(x|αj , βj)
is provided in [4] as

KL
GGD

(pi||pj) = log

(
βiαjΓ(1/βj)

βjαiΓ(1/βi)

)
+(

αi
αj

)βj Γ((βj + 1)/βi)

Γ(1/βi)
− 1

βi
,

(5)

where Γ(·) denotes the Gamma function [24]. Another way
to model the non-Gaussian nature of the coefficients is to use
zero-mean Gaussian mixture models (GMM) [25]. Although
there exists no closed-form expression for the KL-divergence
between two GMMs we mention the GMM model at this point
since we will need it to explain a model for the DT-CWT
detail subbands later. The reasoning for a GMM is built upon
the compression property (i.e. two-Population property [25])
of the DWT. By transforming a signal with the DWT we
obtain a sparse representation with a small number of large
coefficients and a large number of small coefficients. This
gives rise to a two component GMM: one Gaussian component
to model the large coefficients and one Gaussian component
to model the small coefficients. Given that the PDF for the
small coefficients is denoted by p(x|0, σ2

S) and the PDF for
the large coefficients is denoted by p(x|0, σ2

L), the PDF of the
two-component GMM can be written as

p(x) =
∑

i∈{S,L}
wip(x|0, σ2

i ), with
∑

i∈{S,L}
wi = 1, (6)

where wi denote the prior probabilities for the corresponding
components. Usually, the model parameters for the GMM are
estimated by an Expectation-Maximization (EM) algorithm
(see [18]). Both, the GGD and the GMM represent accurate
models for marginal distributions of the subband coefficients.

D. DT-CWT Detail Subband Models

In case of the DT-CWT, each detail subband coefficient
xi is complex-valued. We start with a very simple model
for the complex detail coefficient magnitudes and refine it
to enhance the goodness-of-fit. An exemplary histogram of
coefficient magnitudes |xi| is shown in Fig.3. Apparently,
candidate models are positively skewed distributions (i.e.
skewed to the right) which often arise in reliability and
life-span modeling [26]. Similar distributions can be also
observed in modeling the statistics (especially the amplitude)
of Synthetic Aperture Radar (SAR) data (see [27], [28]). In
order to derive a model for the coefficient magnitudes, we
first follow the naive approach of assuming that both the real
and imaginary component of the complex-valued signal can
be modeled by zero-mean Gaussian distributions with equal
variance. Under this assumption, it can easily be verified by a



KWITT et al.: LIGHTWEIGHT PROBABILISTIC TEXTURE RETRIEVAL 5

variable transformation to polar coordinates that the magnitude
follows a Rayleigh distribution with PDF

p(x|α) =
x

α2
exp

(
− x2

2α2

)
, (7)

0 < x <∞ and α > 0 (shape). The ML parameter estimates
have an explicit expression and are given in [23]. The KL-
divergence between two Rayleigh distributions pi := p(x|αi)
and pj := p(x|αj) is

KL
Rayleigh

(pi||pj) =

(
αi
αj

)2

+ 2 log

(
aj
ai

)
− 1. (8)

However, due to the high percentage of rejected null hypoth-
esis (see Table I), this first statistical model is probably not
flexible enough to describe the underlying data.

The next model we consider is the two-parameter Weibull
distribution which includes the Rayleigh distribution as a
special case. This is a reasonable choice since there are
more degrees of freedom to adapt to the data. In [29] we
exploited the Weibull distribution parameters for the purpose
of medical image classification and in [30] this model was first
successfully employed in texture image retrieval. The PDF of
a Weibull distribution is

p(x|α, β) =
α

β

(
x

β

)α−1
exp

{
−
(
x

β

)α}
, (9)

with 0 < x < ∞, α > 0 (shape) and β > 0 (scale).
For α = 2 and β =

√
2β (9) reduces to the Rayleigh

distribution. Solutions for the MLEs of β and α are again
given in [23] and will be discussed in Section III, together
with an alternative estimation method. Inserting the PDF of the
Weibull distribution into (2) leads to the following closed-form
expression for the KL-divergence between pi := p(x|αi, βi)
and pj := p(x|αj , βj),

KL
Weibull

(pi||pj) = Γ

(
αj
αi

+ 1

)(
βi
βj

)αj

+ log
(
β−αi
i αi

)
−

log
(
β
−αj

j αj

)
+ log (βi)αi − log (βi)αj +

γαj
αi
− γ − 1,

(10)

where γ = 0.577216 denotes the Euler-Mascheroni constant.
Table I shows, that the Weibull distribution is a good statistical
model, especially for decomposition depths ≥ 2.

The third model we consider is the Gamma distribution,
which has previously been proposed as an alternative to the
Rayleigh distribution for modeling the magnitudes of Gabor
filter outputs [31]. The Gamma PDF is

p(x|α, β) =
β−αxα−1

Γ(α)
exp

(
−x
β

)
, (11)

with x < 0 < ∞, α > 0 (shape) and β > 0 (scale). Again,
there exists a closed-form expression for the KL-divergence
between the PDFs pi := p(x|αi, βi) and pj := p(x|αj , βj),

KL
Gamma

(pi||pj) = ψ(αi)(αi − αj)− αi+

log

(
Γ(αj)

Γ(αi)

)
+ αj log

(
βj
βi

)
+
αiβi
βj

,
(12)

where ψ(·) denotes the Digamma function [24]. The numbers
in Table I indicate that the Gamma distribution seems to be a
good model as well, with almost equal percentages of rejected
null-hypothesis compared to the Weibull distribution.

The last model we discuss here is a direct result of modeling
the DWT coefficients by GMMs (see Section II-C). Since the
real and imaginary components of the complex coefficients can
be fairly well modeled by a GGD, it seems reasonable to derive
the corresponding distribution for the absolute values. This has
already been done in [27], however with the result that the
PDF (termed Generalized Gaussian Rayleigh) has no analytic
expression and requires numerical integration. Fortunately, the
real and imaginary component can also be modeled by separate
GMMs. Relying on the same arguments that are used to derive
the Rayleigh distribution leads to a two-component mixture
of Rayleigh distributions (RMM) as a statistical model for the
absolute values. The parameters of the RMM are estimated
using an EM algorithm which is given in Appendix A. As with
GMMs, there exists no closed-form expression for the KL-
divergence and we have to resort the MC simulation. Although
the RMM is impractical for lightweight texture retrieval we use
it as a reference model for our comparative study. To visualize
the PDF shape of the discussed statistical models, Fig.3 shows
a histogram of DT-CWT coefficient magnitudes together with
the fitted PDFs.
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Fig. 3. Histogram (shaded) of DT-CWT wavelet coefficients magnitudes
|xi|, xi ∈ C together with fitted PDFs of the discussed statistical models
(second-level detail subband of image Fabric.0000, see Fig.5(a)).

E. A Final Similarity Measure

In the previous sections we discussed how to measure
similarity between the statistical wavelet coefficient models of
one subband. Yet, we do not have a final similarity measure
between two images. For that reason we follow the same
approach as in [4] and assume that the detail subbands of
the DT-CWT are independent. This allows application of the
chain-rule of entropy which leads to a simple final similarity
measure where we can sum up the KL-divergences over all
subbands [32]. To formalize this, let J denote the maximum
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decomposition depth, k denotes the subband index and K
denotes the number of subbands per scale. The final similarity
measure between two images Iq and Ii is defined as

S(Iq, Ii) :=

J∑
j=1

K∑
k=1

KL(pskq ||pski ), (13)

where the superscripts s and k identify the PDF of the
statistical model for the k-th subband at decomposition level j.
Although, the independency assumption is likely to be violated
for any overcomplete transform, we neglect this fact for the
sake of computational simplicity. We further note, that the
KL-divergence is not a metric, since it violates the symmetry
property and the triangle inequality. To remedy the lack of
symmetry, we follow the approach of [33] and artificially sym-
metrize the KL-divergence. Let pi and pq denote two arbitrary
PDFs, then the symmetrized KL-divergence is defined as

∗
KL(pq||pi) :=

1

2
(KL(pi||pq) + KL(pq||pi)) . (14)

We use this symmetric version of the KL-divergence for all
experiments.

III. PARAMETER ESTIMATION

In this section we cover the issue of model parameter esti-
mation which is crucial to achieve good retrieval performance.
To the best of our knowledge, the issue of both precise and
computationally inexpensive estimation is often neglected in
research works on probabilistic image retrieval. We discuss
the two most prominent estimation methods in the context
of distribution parameter estimation: Maximum-Likelihood
estimation (MLE) and the method of Moment Matching (MM).

A. GGD Parameters

Since estimation of the GGD parameters has already been
extensively covered in literature, we only provide a brief
overview of the main results. Maximum Likelihood estimation
is studied in the work of Varanasi et al. [34] including both
joint parameter estimation and situations where one parameter
is already known. In image retrieval both parameters are
unknown and estimation of the shape parameter β requires
to find the root of a transcendental equation. Do and Vetterli
provide a Newton-Raphson algorithm in [4] which involves
computation of the Digamma and Trigamma function. For
the computational analysis in Section IV-C we refer to their
implementation. The starting value for the Newton-Raphson
iteration is usually obtained using the moment estimate of β,
presented by Birney et al. [35] and Mallat [36]. However, even
moment matching is challenging since it requires a numerical
solution to a function inversion problem. This problem can
either be solved using the combination of a lookup-table and
some sort of interpolation method, or by employing the ap-
proximation of Krupinski [37]. The author proposes to define
an invertible approximation to the aforementioned function
and solves a non-linear curve fitting problem for certain ranges
of β. Moment matching then reduces to a simple function
evaluation. In a very recent publication, Song [38] proposes
another alternative method to ML estimation of β. The idea

is based on exploiting a convex shape equation, leading to a
globally convergent and computationally appealing Newton-
Raphson algorithm which is free of any kind of Gamma
function. Furthermore, with probability tending to one, the
author shows that if we choose β̂1 ∈ [β,∞], where β de-
notes the true shape parameter, the Newton-Raphson iteration
converges to β for N → ∞. Hence, a good choice for β̂1
is 3, since most detail subband coefficient distributions of
natural images exhibit 0 < β < 3. This remedies at least
the starting value problem. In our retrieval experiments, we
assess the interesting question whether it is actually necessary
to compute ML estimates, or if it is enough to use moment
estimates with low computational requirements.

B. Weibull Parameters

We discuss two ML estimation methods for the parameters
α and β of the Weibull distribution. Our experiments show,
that by using a theoretical result from statistics, we can
significantly decrease the computational effort required to
determine α̂ and β̂. First, we present the direct approach of
using the log-likelihood function of the Weibull distribution.
For that reason, let x1, . . . , xN be a random sample drawn
from a Weibull distribution with parameters α, β. According
to [23], the MLE of α is the solution to

g(α) :=

N∑
i=1

xαi log(xi)−K
N∑
i=1

xαi −
1

α

N∑
i=1

xαi = 0, (15)

with K := 1
N

∑N
i=1 log(xi). In order to solve (15) using

Newton-Raphson, we determine the first derivative ∂g/∂α as

g′(α) :=
∂g

∂α
=

N∑
i=1

xαi log(xi)
2−

K

(
N∑
i=1

xαi log(xi)

)
+

1

α2

N∑
i=1

xαi −
1

α

N∑
i=1

xαi log(xi).

(16)

The MLE is then obtained by using the update step α̂n =
α̂n−1−g(α̂n−1)/g′(α̂n−1) for n ≥ 2. Subsequently, the MLE
of β has the explicit expression:

β̂ =

(
1

N

N∑
i=1

xα̂i

)1/α̂

(17)

The starting value α̂1 is usually computed by moment match-
ing. Unfortunately, even that requires a numerical procedure,
since the parameter estimate α̂ is the solution to

Γ3 − 3Γ2Γ1 + 2Γ3
1

(Γ2 − Γ2
1)

3/2
− a3 = 0, (18)

where Γk := Γ(1 + k/α) and

a3 :=
1
N

∑N
i=1(xi − x)3[

1
N

∑N
i=1(xi − x)2

]3/2 (19)

denotes the sample skewness. A first approximation of α̂ to
solve (19) can be obtained from a α-versus-a3 table and linear
interpolation. However, as noted in [26], computational diffi-
culties can arise for ML estimation in cases where α < 2.2.
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The second, alternative estimation method we discuss is based
on the theoretical result, that if a random variable X follows
a Weibull distribution, then the random variable Y = log(X)
follows an Extreme Value distribution of type I (Gumbel
distribution). Now, let yi := log(xi) using the random sample
x1, . . . , xN of the Weibull distribution from above. The PDF
of the Gumbel distribution is

p(y|µ, σ) =
1

σ
exp

(
y − µ
σ

)
exp

{
− exp

(
y − µ
σ

)}
, (20)

with −∞ < y <∞, 0 < µ <∞ (location) and σ > 0 (scale).
This Extreme Value distribution might be though of as a Log-
Weibull distribution [26]. The MLE of σ requires a numerical
solution to

f(σ) := y − σ −
∑N
i=1 yi exp

(
−yiσ

)∑N
i=1 exp

(
−yiσ

) = 0, (21)

where y denotes the sample mean of the observations. We can
determine the first derivative of f(σ) w.r.t. σ as

f ′(σ) :=
∂f

∂σ
=

1

σ2

N∑
i=1

y2i exp
(
−yi
σ

)
−

N∑
i=1

exp
(
−yi
σ

)
− 1

σ

N∑
i=1

yi exp
(
−yi
σ

) (22)

which now allows to employ the Newton-Raphson algorithm.
In contrast to the problematic computation of the starting value
α̂1 in case of the direct MLE approach from above, the starting
value σ̂1 can be easily obtained from the explicit expressions
of the moment estimates [26]

σ̂1 := σ̂ =
1

π

√
6s ≈ 0.779697s and µ̂ = y − γσ̂, (23)

where s denotes the sample standard deviation. Given that we
have determined a ML solution σ̂, the MLE µ̂ then directly
follows as

µ̂ = σ̂ log

(
1

N

N∑
i=1

exp
(yi
σ̂

))
. (24)

The only thing left to do is to transform the estimates (either
MLE or moment estimates) µ̂ and σ̂ to estimates α̂ and β̂ of
the Weibull parameters by using

α̂ = exp(σ̂) and β̂ =
1

µ̂
. (25)

As we have noted in case of the GGD parameters, we evaluate
whether the moment estimates lead to different retrieval results
when they are used instead of the MLEs for similarity mea-
surement. In what follows, we use the abbreviation Weibull-G
in order to refer to the Weibull parameter estimation method
via the Gumbel distribution.

C. Gamma Parameters

In order to estimate the parameters α and β of the Gamma
distribution, we follow the approach presented in [39]. Given
that x1, . . . , xN denotes a random sample drawn from a

Gamma distribution with parameters α and β, then the explicit
expression for the Newton-Raphson update step is

α̂n = α̂n−1 −
log(α̂n−1)− ψ(α̂n−1)−M

1/α̂n−1 − ψ′(α̂n−1)
, (26)

for n ≥ 2, where ψ(·) denotes the Digamma function, ψ
′
(·)

denotes the Trigamma function and

M := log(x)− 1

N

N∑
i=1

log(xi). (27)

The MLE of β then follows as

β̂ =
µ̂

x
. (28)

We can significantly reduce the computational overhead to
evaluate the Digamma and Trigamma function by using a
lookup-table and linear interpolation for example. A starting
value α̂1 is obtained from the moment estimates [40]

α̂1 := α̂ =

(
x

s

)2

and β̂ =
s2

x
. (29)

Note, that no computationally expensive operations have to be
performed to estimate these starting values.

IV. COMPUTATIONAL ANALYSIS

In this section we present an in-depth computational anal-
ysis in terms of arithmetic operations for the main building
blocks of our image retrieval framework: image representation,
similarity measurement and parameter estimation. This anal-
ysis is a necessary step, since it allows to quantify the term
lightweight. We further present a comparative runtime analysis
using MATLAB implementations of the different estimation
methods and similarity measurement parts.

A. Image Representation

Besides its advantages for image analysis, the DT-CWT is
appealing from a computational point of view, since it can be
implemented very efficiently by four parallel pyramidal DWTs
using appropriate filter sets. Regarding space requirements,
the DT-CWT is an overcomplete transform with a redundancy
factor of four in case of 2-D images. In contrast, the DCT
(used in [5]) is non-redundant, the Steerable Pyramid [7] is
overcomplete by a factor of 4k/3 (k denotes the number of
orientation subbands) and the Stationary Wavelet Transform
(SWT) [41] is overcomplete by a factor of 3J , where J de-
notes the maximum decomposition depth. The computational
complexity of the DT-CWT is linear O(N) in the number of
input pixels N , since it requires computation of four parallel
DWT decompositions which are of linear complexity. Hence,
both DWT and DT-CWT differ only by a constant factor. For
comparison, the DCT, SWT, Steerable Pyramid and Gabor
wavelets (when implemented in the frequency domain) have
complexity O(N logN). However, in case of a block-based
DCT with 8 × 8 blocks, the logN term carries no weight
compared to a full-frame DCT.
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B. Similarity Measurement

In the classic retrieval scenario, the similarity measurement
part is most critical for runtime performance since each new
query image requires computation of the similarity measure
for all candidate images in the database. In case the statistical
model parameters of the database images are estimated at the
time of storage, the runtime performance of the retrieval task
is completely determined by the performance of the similarity
measurement process. Although all presented KL-divergences
can be computed with constant complexity (except for the
RMM model, where we use MC simulation), it is interesting
to take a closer look at the required arithmetic operations.
By arithmetic operations we understand the number of ad-
ditions/subtractions and multiplications/divisions (basic arith-
metic operations) as well as the computationally expensive
log, ex and xr operations with x, r ∈ R. We further take
into account any non-trivial operation, such as the evaluation
of the Gamma Γ(·) or the Digamma ψ(·) function. To avoid
numerical difficulties, we compute log Γ(·) instead of Γ(·)
at the cost of perhaps one additional exponentiation. The
function values of log Γ(·) and ψ(·) are obtained by employing
lookup-tables and the method of linear interpolation. Both
operations can be performed with constant complexity and
only require basic arithmetic (e.g. 5 additions/subtractions, 4
multiplications/divisions and 2 table-lookups in our implemen-
tation). To conduct a relative runtime measurement, all KL-
divergences are implemented in MATLAB. The runtime is
measured on a Intel Core2 Duo 2.66Ghz system with 2GB
of memory running MATLAB 7.6. We emphasize that the
focus is on relative runtime differences not on absolute values.
Given that the statistical model parameters of an arbitrary
wavelet subband are available (i.e. pre-computed) for the
query and all L database images, we simulate a search for
L = 104. Table II lists the number of arithmetic operations
for each KL-divergence as well as the runtime relative to
the longest runtime (marked bold). As we can see, the KL-
divergence for the GGD has the worst performance, due to the
computations of log Γ(·). The KL-divergence of the Gamma
model shows slightly worse runtime performance than the KL-
divergence for the Weibull model which can be attributed to
computation of ψ(·) and the additional log Γ(·). The Rayleigh
KL-divergence performs best but unfortunately the model as
such is too inflexible, as we have seen in Section II-D. Last,
we note that since all KL-divergences have a closed-form
expression, no histogram computation and discrete version
of the KL-divergence is required. In practice, this is a huge
advantage since we only have to store the model parameters
per image and further avoid the search for a reasonable
histogram binning.

C. Parameter Estimation

Except for the Rayleigh model, all ML parameter estimation
procedures require numerical root-finding to obtain estimates.
Since we can determine the derivatives of the log-likelihood
functions w.r.t. the relevant parameters in all cases, it is rea-
sonable to use the Newton-Raphson algorithm due to its good
convergence properties. However, optimal (i.e. quadratic) con-

TABLE II
NUMBER OF ARITHMETIC OPERATIONS FOR SIMILARITY MEASUREMENT

BETWEEN TWO ARBITRARY SUBBANDS

Model ± ×, ex, xr
log Γ ψ

Relative
÷ log Runtime

GGD, see (5) 6 10 3 4 0 1.00
Gamma, see (12) 6 5 1 2 1 0.56
Weibull, see (10) 8 9 8 1 0 0.31
Rayleigh, see (8) 2 4 1 0 0 0.01

TABLE III
NUMBER OF ARITHMETIC OPERATIONS FOR NEWTON-RAPHSON AS A

FUNCTION OF THE SIGNAL LENGTH N

Model ± ×, | · | ex, xr
ψ,ψ′ Relative

÷ log Runtime
GGD, MLE [4] 3N 2N N 2N 2 0.76
GGD, Song [38] 4N 3N N 2N 1.00

Weibull-G 4N 3N N 0.21
Weibull 4N 2N 2N 0.62
Gamma 2N 4 N 2 0.21

vergence is only possible if the first estimate (starting value)
is close to the actual root. To fulfill this requirement, we use
moment estimates for the Gamma, Weibull and GGD model.
By employing the invertible approximation proposed in [37] in
case of the GGD and the Weibull-G moment matching method
in case of the Weibull distribution, we can at least eliminate the
issue of computationally intensive starting value calculations.
The exact computational requirements for moment matching
will be discussed later. To get an impression of the computa-
tional demand in each iteration step of the Newton-Raphson
algorithm, we determine the number of required arithmetic op-
erations. For the exact expressions of the update steps in case
of the GGD MLE approach and Song’s method, we refer to [4]
and [38]. We optimize computation in such a way, that terms
(e.g. summations, logarithms, etc.) which occur repeatedly in
an iteration step are temporary stored for further use. Since
many operations depend on the signal length N , we omit any
additional constants for readability reasons in these cases. The
number of arithmetic operations per iteration and the runtime
performance of the ML estimation procedures relative to the
longest runtime (marked bold) are listed Table III. Further,
Fig.4 shows a boxplot of the mean estimation times over a
set of parameter values for all ML estimation approaches.
For each parameter value, estimation is repeated 100 times on
105 random numbers drawn from the corresponding statistical
model. ML estimation using the Weibull-G approach shows
the best performance, with only one iteration on average to
reach convergence (i.e. absolute difference of two successive
estimates is less than 10−6). In contrast, direct estimation of
the Weibull parameters is less competitive, mainly due to the
impact of starting value computation which takes about 50% of
the total runtime. The Gamma MLE procedure performs good
as well, although the number of iterations is the limiting factor
here, since one Newton-Raphson update step requires fewer
arithmetic operations compared to the Weibull-G approach.
As expected, the complex update step of the GGD model with
more log, xr, ex operations leads to an increase in computation
time compared to the Weibull-G or Gamma model. Regarding
the number of iterations, we confirm the results of [4] with
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Fig. 4. Boxplot of the model parameter estimation times, together with
the average number of Newton-Raphson iterations to reach the defined
convergence bound.

TABLE IV
NUMBER OF ARITHMETIC OPERATIONS FOR MOMENT MATCHING AS A

FUNCTION OF THE SIGNAL LENGTH N

Model ± ×, | · | ex, xr
log Γ

Relative
÷ log Runtime

GGD [37] 2N N N 3 2 0.15
Weibull-G, see (23) 3N N N 1.00

Gamma, see (29) 3N N 0.32

four iterations on average to reach convergence. The estimation
approach proposed by Song [38] shows the worst runtime
performance and a quite strong dispersion as well. A closer
look at the number of iterations for each shape parameter
reveals an average of 10 iterations for β < 1.0 which slightly
distorts the average. This seems reasonable, since the starting
value of β̂1 = 3 is actually far-off the true value in these
situations. We omit the estimation effort for the RMM, since
comparing an EM algorithm to MLE procedures is not fair.
The estimation time for a RMM subband model with 65536
coefficients is in the order of seconds, i.e. by a factor of at least
one magnitude slower than the method of Song for example.

As a last point, we assess the number of arithmetic opera-
tions to compute moment estimates of the GGD, Gamma and
Weibull distribution. A careful analysis of moment estimation
is reasonable, since we use these estimates as a fast alternative
to the MLEs in our experiments. The corresponding numbers
are listed in Table IV. We emphasize, that this is the total effort
to compute a first parameter estimate. No iterative procedures
are necessary and mostly basic arithmetic operations are
performed. Only in case of Weibull-G moment estimation,
the logarithm operation is dependent on the signal length
N . This fact is reflected in the relative runtime differences
because the logarithm is an expensive operation compared
to addition/subtraction or multiplication/division. The fast ap-
proximative GGD parameter estimation of [37] shows the best
performance since the expensive computations like log Γ(·),
ex or log do not depend on the signal length N . Further, this
approach apparently benefits from our lookup-table implemen-
tation of log Γ(·). Regarding moment estimation of the Gamma
parameters, we note that this approach basically requires to
compute the sample mean and sample standard deviation and
hence performs at a competitive level compared to [37] as
well.

V. EXPERIMENTAL RESULTS

The objective of the experimental section is to cover three
important issues: first, we address the impact of either using
moment estimates or ML estimates on the retrieval results.
Second, we compare the retrieval performance of the DT-
CWT and the proposed statistical models to previous research
work, including the approaches presented in [3], [4] and the
classic mean/standard deviation features of [42] (abbreviated
by Classic). Third, based on the computational analysis of the
previous section and the achieved retrieval rates, we intend to
give a guideline for lightweight retrieval w.r.t. the scenarios of
Section I.

We work with a selection of images from the popular
MIT Vision Texture Database (VisTex) [43], consisting of 40
textures which have already been extensively used in texture
image retrieval literature. All images are first converted to the
LUV color model and only the luminance (L) channel infor-
mation is retained. The 512×512 pixel versions of the textures
are split into 16 non-overlapping subimages (128×128 pixel).
The only preprocessing step is to normalize the subimages
by subtracting the pixel mean and dividing by the standard
deviation. A selection of example textures is shown in Fig.5.
Regarding the filter sets for the wavelet transforms, we use the
CDF 9/7 filter [44] for the pyramidal DWT and Kingsbury’s
Q-Shift (14,14)-tap filters (levels ≥ 2) in combination with
(13,19)-tap near-orthogonal filters (level 1) for the DT-CWT
(see [45]).

The experimental setup for the reference approach of [3]
is as follows: we extract the first 16 DCT coefficients (in
zigzag scan order) of a sliding 8 × 8 window (step size of
two pixel in vertical and horizontal direction) as features and
then fit a multivariate GMM with eight components using the
classic EM algorithm. The EM algorithm terminates if either
200 iterations are reached or the log-likelihood difference be-
tween two successive iterations is less than 10−6. Covariance
matrices are restricted to diagonal matrices and are regularized
by a small ε > 0 to ensure positive definiteness. The starting
parameters of the EM algorithm are initialized according to
[20], where the author uses the Linde-Buzo-Gray (LBG, aka
generalized Lloyd) algorithm [46] with the codeword splitting
procedure proposed by Gray [47]. LBG terminates when the
difference between the average distortions of two successive
iterations is less than 10−3. For similarity measurement, we
compute the feature-likelihood as proposed in [3]. Features
are extracted from the first 16 DCT coefficients of all non–
overlapping 8×8 blocks. Hence, we obtain 256 feature vectors
for each query image. We further evaluate the impact of using
only every second or every fourth block. This gives 128 or
64 query feature vectors (QV), resp. Other possible choices
for similarity measurement are the Asymptotic-Likelihood
approximation of [20] or the approximations proposed by
Goldberger [48]. In what follows, we abbreviate the approach
by DCT (MGMM, EM) and additionally add the number of
extracted QVs when necessary.

To evaluate the performance of the retrieval system we
determine the number of correctly retrieved images among
the top K matches. A retrieval result is correct if an image of
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(a) Fabric.0000 (b) Food.0000 (c) Bark.0000

(d) Bark.0009 (e) Brick.0001 (f) Metal.0000

Fig. 5. Six example textures of the VisTex [43] database.

the same parent is retrieved. Formally, let Q := {r1, . . . , rB}
denote the set of correct membership indices to a given
query, where B denotes the number of subimages. Further,
let {q1, . . . , qK} denote the index set of the top K matches.
The percentage of correctly retrieved images is then calculated
as follows:

sK =
1

B

K∑
i=1

1Q(qi), with 1Q(x) :=

{
1, if x ∈ Q,

0, else
(30)

Since each image is split into 16 subimages, we set K =
B = 16. Table V lists the percentage of correctly retrieved
images among the top K = 16 matches with decomposition
depths less than three. Table VI provides detailed texture-
specific results, where the highest retrieval rates per texture
are marked bold (in case of no ties).

In case of the pyramidal DWT, we can almost reproduce
the results of [4] and further observe a slight trade-off be-
tween estimation accuracy and retrieval performance when
comparing the rates for ML estimation and moment matching.
Regarding the DT-CWT results, the situation is somewhat
different. The estimation accuracy vs. retrieval rate trade-off
is only evident in case of the Weibull-G model, since moment
matching for the Gamma parameters leads to the second-best
overall retrieval results with 81.73%. This is 3.21 percentage
points less than the DCT (MGMM, EM, 256) rate and 0.94
percentage points above the rate of the DT-CWT (RMM,
EM) reference model. Figures 6(a) and 6(b) show a receiver
operating characteristic (ROC) curve comparison when relying
on either moment matching or ML estimation. The figures
are obtained by plotting the retrieval rate 100 · sK as a
function of the number of retrieved images K. We conclude,
that the differences in retrieval accuracy are rather small, no
matter which estimation method we choose. Nevertheless, our
observations lead to the presumption that ML estimation does
not necessarily lead to the best retrieval results.

With respect to the quality of the proposed statistical models
for the DT-CWT coefficient magnitudes, we see that the DT-
CWT (Weibull-G, MLE) as well as the DT-CWT (Gamma,
MM) approach clearly improve retrieval performance by 5.43
and 3.91 percentage points, resp., compared to the DWT
(GGD, MLE) results of [4]. Even the combinations DT-CWT

(Rayleigh, MLE) and DT-CWT (Classic) show acceptable
performance, although the Rayleigh model is a very coarse
approximation to the distribution of the complex coefficient
magnitudes (see Table I) and the Classic features do not
assume any statistical model at all. We thus conjecture that
the increase in retrieval performance cannot be exclusively
attributed to the statistical models, but in a large part to
the choice of image representation. The advantages of the
DT-CWT over the DWT (see Section II-A) are definitely
reflected in the experimental results. To visualize the retrieval
performance of the top approaches, Fig.6(c) shows a ROC
curve comparison between the DWT (GGD, MLE) [4], DT-
CWT (Gamma, MM), DT-CWT (RMM, EM) and the DCT
(MGMM, EM, 256) [3] approach. It is evident that the
slope of the curves becomes more shallow as the number of
retrieved images K increases. This implies that the difference
in retrieval accuracy becomes increasingly relevant as K
grows, since significantly more retrieved images are required
to achieve equal rates.

With respect to the two retrieval scenarios we mentioned in
Section I, it seems plausible that not all presented approaches
are applicable in both situations. Considering the first scenario
from a purely computational viewpoint, all models except the
DT-CWT (RMM, EM) are practicable since the complexity of
similarity measurement is the primary concern. However, we
emphasize that the numbers in Table II indicate considerable
runtime differences for the KL-divergences which can be a
relevant issue in cases of large databases. In case we accept to
to trade computational performance for retrieval accuracy, the
DCT (MGMM, EM, 256) approach of [3] is the first choice.
Although the computation of the feature likelihood is expen-
sive compared to constant complexity similarity measurement
with closed-form expressions for the KL-divergences, we get a
remarkable increase of 3.21 percentage points. Decreasing the
computational cost by reducing the number of QVs to 64 still
leads to the best results with 82.28%, however, the margin to
the DT-CWT (Gamma, MM) approach shrinks to only 0.55%.
Taking the retrieval results into account, we recommend the
the DT-CWT (Gamma, MM) approach for very large databases
where no indexing is in place and favor the DCT (MGMM,
EM) approach otherwise. With respect to the second retrieval
scenario, the situation is different. Virtually all parts of the
retrieval system are constrained by computational limitations,
hence only a few approaches remain practicable. As a general
guideline, we propose to switch from ML estimates to moment
estimates since we cannot report any significant decrease in
retrieval performance. With the results of our computational
study in mind, we favor the DT-CWT (Gamma, MM) approach
which achieves constant complexity similarity measurement,
linear-complexity parameter estimation and linear-complexity
image transformation at the second-highest retrieval rate of
our experiments.

VI. CONCLUSION

In this work, we analyzed the framework of probabilis-
tic texture retrieval in the wavelet domain from the view-
points of retrieval accuracy and computational performance.
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TABLE V
TOP K = 16 RETRIEVAL RATES [%]

Scales
DT-CWT DWT

DCT & MGMM [3]Rayleigh Gamma Weibull-G Classic RMM GGD [4] ClassicMLE MM MLE MM MLE MM
1 62.96 72.83 73.07 71.80 71.94 67.49 74.25 67.53 67.27 59.77 84.94 (256 QV)
1,2 68.44 77.27 77.74 76.11 76.04 70.91 77.93 74.43 73.83 64.55 84.53 (128 QV)
1,2,3 73.96 81.06 81.73 80.21 79.61 75.99 80.79 76.30 75.65 65.50 82.28 (64 QV)
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Fig. 6. ROC curves of the retrieval rate as a function of the number of retrieved images K.

TABLE VI
PER-TEXTURE RETRIEVAL RATES (K = 16) [%]

Texture
DWT DT-CWT DCT & MGMM

(256 QV) [3]GGD [4] Rayleigh Weibull Gamma RMMMLE MM MLE MM MLE MM
Bark.0000 60.16 55.86 54.69 64.45 63.67 62.50 55.47 60.94 53.12
Bark.0006 52.34 50.78 49.22 57.81 56.25 60.16 63.67 58.20 71.48
Bark.0008 72.66 69.92 74.22 82.81 78.12 81.64 86.72 88.28 92.58
Bark.0009 58.20 57.81 58.98 64.84 63.28 63.67 63.67 58.98 70.70
Brick.0001 71.09 72.27 76.95 80.08 78.12 79.69 83.98 79.30 96.09
Brick.0004 63.67 61.33 50.78 70.70 73.44 75.39 74.61 71.09 67.19
Brick.0005 85.16 77.73 82.03 92.19 92.58 92.58 90.23 93.36 76.95
Buildings.0009 93.36 92.97 91.41 94.92 96.09 95.70 96.09 94.53 93.36
Fabric.0000 85.55 85.16 80.08 91.41 91.02 94.14 96.48 95.31 99.61
Fabric.0004 64.45 65.62 63.28 66.41 66.41 66.41 67.97 64.45 59.77
Fabric.0007 96.88 96.88 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Fabric.0009 82.81 80.86 89.06 99.61 99.61 99.61 99.61 94.53 95.31
Fabric.0011 82.81 83.59 71.09 78.52 75.78 78.91 83.98 85.55 91.80
Fabric.0014 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Fabric.0015 99.61 99.61 94.92 98.44 98.05 99.22 99.22 99.61 99.61
Fabric.0017 86.33 86.33 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Fabric.0018 89.84 90.23 99.22 100.00 100.00 100.00 100.00 100.00 99.61
Flowers.0005 58.20 55.86 53.12 65.23 65.62 69.53 66.41 69.53 94.14
Food.0000 78.52 75.00 82.42 92.19 92.58 94.53 96.09 96.88 100.00
Food.0005 86.72 86.33 93.36 97.27 97.66 98.05 99.61 99.22 98.83
Food.0008 96.48 97.27 90.62 93.75 89.06 99.61 99.61 98.83 100.00
Grass.0001 64.06 64.84 57.42 71.48 69.14 69.14 67.97 69.53 87.11
Leaves.0008 64.45 66.80 79.69 72.66 71.88 66.80 69.14 75.39 59.77
Leaves.0010 34.38 32.03 21.48 32.42 32.81 36.33 37.89 36.72 66.02
Leaves.0011 82.42 78.52 76.56 84.77 82.42 82.81 78.52 80.08 94.92
Leaves.0012 73.83 76.95 69.14 75.78 75.78 78.52 86.33 82.81 94.14
Leaves.0016 83.98 81.25 55.08 80.08 75.39 80.08 83.20 67.97 89.45
Metal.0000 68.75 69.14 66.80 66.80 67.97 71.48 73.83 66.80 82.81
Metal.0002 99.61 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Misc.0002 76.56 76.17 66.02 76.95 80.08 81.64 85.16 83.98 96.09
Sand.0000 76.95 76.95 81.25 91.02 88.67 92.58 92.58 94.14 94.53
Stone.0001 48.83 59.77 69.53 60.94 59.38 57.81 58.59 58.20 32.42
Stone.0004 81.25 80.86 73.83 78.91 78.52 80.86 85.16 80.86 85.55
Terrain.0010 56.64 52.73 50.78 57.81 57.81 60.55 60.16 48.05 64.45
Tile.0001 51.56 51.95 38.28 51.56 49.61 54.30 56.25 54.69 76.17
Tile.0004 99.61 97.66 82.03 98.83 99.22 99.22 98.44 96.48 98.44
Tile.0007 99.61 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Water.0005 96.48 96.09 92.97 94.14 95.70 96.88 96.09 92.19 96.48
Wood.0001 47.66 45.70 26.56 29.30 30.08 32.42 30.47 37.50 38.28
Wood.0002 80.47 77.34 95.31 94.53 92.58 89.84 85.94 97.66 80.86
Avg. 76.30 75.65 73.96 80.21 79.61 81.06 81.73 80.79 84.94
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We introduced a novel retrieval approach based on image
representation in the complex wavelet domain and several
statistical models for the magnitude of the complex transform
coefficients. We further presented closed-form expressions for
the KL-divergences between the proposed statistical models,
thus allowing constant complexity similarity measurement. By
assessing the impact of using moment estimates instead of
ML estimates for computing the KL-divergence, we showed
that the difference between estimation and retrieval accuracy
is negligible and we can achieve a remarkable improvement
w.r.t. computational performance. Unexpectedly, the DT-CWT
(Gamma, MM) model even lead to the second-best retrieval
rate. In general, the experimental results indicate superior
performance of our approach compared to [4] and competitive
performance to a significantly more complex method [3] (in
terms of computational cost). In addition, we observed that
all DT-CWT based approaches apparently benefit from the
transform-specific advantages of the DT-CWT over the pyra-
midal DWT. Future research includes three particular points:
first, we plan to evaluate the quality of our models for natural
images. Second, we focus on a rotational-invariant extension
while keeping the computational cost as low as possible. Third,
the reasonable incorporation of color information is still an
open issue and poses a challenging task.

APPENDIX A
EM ALGORITHM FOR RAYLEIGH MIXTURES

The following steps provide an EM algorithm for estimating
the parameters of a K-component Rayleigh Mixture Model
(RMM). Let x1, . . . , xN denote a sample drawn from the
RMM model and let πk denote the prior probability of
selecting the k-th component. Further, let π = [π1, . . . , πK ]
and α = [α1, . . . , αK ]. The EM steps are as follows:

1) Initialize: θ(0) =
[
α(0) π(0)

]
and m← 0

2) E-Step: Evaluate the conditional probability of selecting
component k given datapoint xn and current model
parameters θ(m) as follows:

p(m)(k|n) =
π
(m)
k p

(
xn|α(m)

k

)
∑
j π

(m)
j p

(
xn|α(m)

j

) , (31)

3) M-Step: Determine π(m+1)
k , α(m+1)

k ∀k as follows:

π
(m+1)
k =

1

N

N∑
n=1

p(m)(k|n) (32)

α
(m+1)
k =

∑N
n=1 p

(m)(k|n)x2n

2
∑N
n=1 p

(m)(k|n)
(33)

4) Evaluate the log-likelihood log p
(
x|θ(m+1)

)
as fol-

lows:
N∑
n=1

log

{
K∑
k=1

π
(m+1)
k p

(
xn|α(m+1)

k

)}
(34)

and check for convergence of the log-likelihood, i.e.
| log p

(
x|θ(m+1)

)
− log p

(
x|θ(m)

)
| < ε with ε = 1−6

for example. In case the termination criteria is not met,
set m← m+ 1 and goto Step 2.
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