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Abstract. The diagnosis of colorectal cancer is usually supported by
a staging system, such as the Duke or TNM system. In this work we
discuss computer–aided pit–pattern classification of surface structures
observed during high–magnification colonoscopy in order to support dig-
nity assessment of colonic polyps. This is considered a quite promising
approach because it allows in vivo staging of colorectal lesions. Since re-
cent research work has shown that the characteristic surface structures of
the colon mucosa exhibit texture characteristics, we employ a set of tex-
ture image features in the wavelet-domain and propose a novel classifier
combination approach which is similar to a combination of experts. The
experimental results of our work show superior classification performance
compared to previous approaches on both a two-class (non-neoplastic vs.
neoplastic) and a more complicated six-class (pit–pattern) classification
problem.

1 Motivation

Recent statistics of the American Cancer Society reveal that colorectal cancer is
the third most common cancer in men and women and the second most common
cause of US cancer deaths. Since most colorectal cancers develop from polyps,
a regular inspection of the colon is recommended in order to detect lesions with
a malignant potential or early cancer. A common medical procedure to examine
the inside of the colon is colonoscopy, which is usually carried out with a con-
ventional video–endoscope. A diagnostic benefit can be achieved by employing
so called high–magnification endoscopes (aka zoom–endoscopes), which achieve
a magnification factor of up to 150 by means of an individually adjustable lens.
In combination with dye–spraying to enhance the visual appearance (chromo–
endoscopy) of the colon mucosa, high–magnification endoscopy can reveal char-
acteristic surface patterns, which can be interpreted by experienced physicians.
Commonly used dyes are either methylene-blue, or indigo–carmine, which both
lead to a plastic effect. In the research work of Kudo et al. [1], the macroscopic
appearance of colorectal polyps is systematically described and results in the so
called pit–pattern classification scheme.



(a) I (b) II (c) III-S (d) III-L (e) IV (f) V

Fig. 1. Schematic illustration of the pit–pattern characteristics (top row) together with
exemplary pit–pattern images obtained during high–magnification colonoscopy (bot-
tom row).

The contribution of this work is a novel way for classifier combination to
enhance the accuracy of differential diagnosis. We propose a fusion of three
approaches from classification research and show that by using several recently
proposed texture image features for endoscopy image classification, we achieve
a remarkable increase in overall classification accuracy.

The remainder of this paper is structured as follows: in Sect. 2, we review the
medical background an introduce the pit–pattern classification scheme. Section
3 discusses the feature extraction step as well as our classification approach. In
Sect. 4, we present the experimental results of our work and Sect. 5 concludes
the paper with a short summary and an outlook on future research.

2 Pit-Pattern Classification

Polyps of the colon are a frequent finding and are usually divided into meta-
plastic, adenomatous and malignant. Since the resection of all polyps is rather
time–consuming, it is imperative that those polyps which warrant resection can
be distinguished. Furthermore, polypectomy5 of metaplastic lesions is unneces-
sary and removal of invasive cancer may be hazardous. The classification scheme
presented in [1] divides the mucosal crypt patterns into five types (pit–patterns
I–V, see Fig. 1), which can be observed using a high–magnification endoscope.

While types I and II are characteristic of benign lesions and represent normal
colon mucosa or hyperplastic polyps (non–neoplastic lesions), types III to V rep-
resent neoplastic, adenomatous and carcinomatous structures. Our classification
problem can be stated as follows: the problem of differentiating pit–patterns I
and II from III–L,III–S,IV and V will be denoted as the two–class problem (non–
neoplastic vs. neoplastic), whereas the more complex and detailed discrimination
of all pit–patterns I to V will be denoted as the six–class problem. At first sight,

5 the process of removing polyps



the pit–pattern classification scheme seems to be straightforward and easy to be
applied. Nevertheless, it needs some experience and exercising to achieve good
results. Correct diagnosis very much relies on the experience of the endoscopist
as the interpretation of the pit–patterns may be challenging [2].

Our approach is motivated by the work of Kato et al. [3], where the au-
thors state that assessing the type of mucosal crypt patterns can actually pre-
dict the histological findings to a very high accuracy. Regarding the correlation
between the mucosal pit–patterns and the histological findings, several stud-
ies reported good results, although with quite different diagnostic accuracies. A
comparative study by Kato et al. [4] shows that the classification accuracy in
magnifying colonoscopy ranges from 80.6% to 99.1%. Another extensive study
by Hurlstone et al. [5] report error rates of approximately 5%. In [6] the authors
claim 95.6% for chromoendoscopy with magnification in contrast to diagnosis
using conventional colonoscopy (84.0%) and diagnosis using chromoendoscopy
without magnification (89.3%). In addition to that, inter–observer variability of
magnification chromoendoscopy has been described at least for Barret’s esoph-
agus [7]. This inter–observer variability may to lesser degree be also present in
the interpretation of pit–patterns of colonic lesions. This work aims at allowing
computer–assisted pit–pattern classification in order to enhance the quality of
differential diagnosis.

3 Feature Extraction and Classification

We use a selection of texture feature extraction approaches in the wavelet–
domain which have already been successfully applied in the context of endoscopy
image classification. Our first feature set is computed using an approach pre-
sented in [8] where the authors decompose each image using the Dual–Tree
Complex Wavelet Transform (DT–CWT) and model the absolute values of detail
subband coefficients by two–parameter Weibull distributions. The Maximum–
Likelihood estimates of the Weibull scale & shape parameter of each subband
are then arranged into feature vectors for nearest–neighbor classification using
the Euclidean distance. Although the work in [8] uses grayscale images, it can
easily be extended for color images by simple feature vector concatenation of
separately computed color–channel feature vectors. In another work [9], a set of
image features is computed from both the classic pyramidal (DWT) and undec-
imated wavelet transform (SWT) by calculating so called color eigen–subband
features (CES). The CES features are essentially the eigenvalues obtained dur-
ing PCA on the stacked wavelet detail subbands of the color–channels. Since
the study in [8] has shown that the DT–CWT produces highly discriminative
features, we have extended the CES approach to work with the DT–CWT. The
last feature extraction approach we take into account is presented in [10] and
it based on the computation of so called color wavelet–energy correlation sig-
natures (WECS) between wavelet–decomposed color–channels. The extension to
the DT–CWT is again straightforward and the dimensionality of the feature vec-
tors is doubled. In the following, feature vectors will be denoted by v ∈ F ⊂ R

d,



where F denotes the feature space and d denotes the feature space dimension-
ality.

3.1 Classification Setup

We propose a fusion of three main approaches from recent work in classification
research. We combine nearest–neighbor (NN) classifiers in a One–Against–One
[11] (aka round–robing or pairwise coupling) setup and optimize each classi-
fier using sequential forward feature subset selection (SFFS) [12]. The different
class predictions are then combined using a voting–against approach and class
posterior probability estimation.

The One–Against–One Approach (OAO) The basic concept of the OAO
classification strategy is to split a multi–class problem into smaller binary prob-
lems with the ulterior motive that the decision boundaries for binary problems
are simpler and easier to learn than the decision boundaries in case of a multi–
class problem. In OAO classification, one classifier is trained for each possi-
ble pair of classes. Given a c–class problem, we thus have to train a total of
c(c − 1)/2 classifiers. In the training stage, each binary classifier is trained us-
ing only the examples of the two classes it has to discriminate. For example,
given that V := {vi}1≤i≤L denotes the complete set of training vectors and
γ : F → {1, . . . , c} denotes a function returning the true class membership of v,
then the binary classifier Cij : F → {i, j} – which discriminates between class i
and j – is trained using the training subset Sij := {vn|γ(vn) = i ∨ γ(vn) = j}.
Hence, we can view the OAO approach as some sort of expert system, where
each classifier is an expert in discriminating only two particular classes. In such
a classifier combining approach we require two important properties of the base
classifiers [13]: diversity and accuracy. First, diversity signifies that the errors
should be uncorrelated and second, accuracy refers to a classification accuracy
of at least 50%. In pratical use, we also require efficiency, which refers to low
computational cost. However, due to space limitations we will not deal with this
issue here.

Increasing Diversity The problem of combining NN classifiers is particularly
interesting in the context of the diversity requirement, since the main approaches
of classifier combination to increase diversity, such as bagging [14] or boosting
[15] do not lead to the desired results. The root of the problem is the insensitivity
of the NN classifier to changes in the training patterns, which is essentially the
starting point for both bagging and boosting. In [16] this issue is discussed in
great detail and a new random feature subset selection approach is proposed,
where each classifier works on a random subset of all available features. Due to
the sensitivity of the NN classifier w.r.t. changes in the feature set, this approach
can increase diversity. Instead of using random feature subsets, we select each
subset by means of SFFS, imposing no limit on the size of the resulting subsets.
Starting with a subset of cardinality one, one feature is added in each iteration



in case this feature improves leave–one–out crossvalidation accuracy. By using
SFFS, we cover both requirements of accuracy and diversity at the same time.
In combination with the OAO approach, we obtain c(c − 1)/2 feature subsets
after the training stage.

Combining Class Predictions Since each classifier in our OAO ensemble
will provide a class prediction, the question arises of how to combine the c(c−
1)/2 predictions. Although it seems straightforward to employ a simple majority
voting rule, this rule is logically incorrect w.r.t. OAO classification for one simple
reason: given an arbitrary sample v ∈ F , a classifier Cij will output either i or j
as the predicted class label. However, this prediction is convenient, if and only if
the sample v actually belongs to either class i or j. In that case the prediction is
termed a qualified prediction. Otherwise, the prediction is termed an unqualified

prediction. As a consequence, given that Cij(v) = i, we can at best conclude
that v is not a member of class j. This interpretation is known as voting against

[17] in contrast to voting for, which is correct only in case each classifier was
trained to discriminate samples from all classes. The final prediction is obtained
by counting the votes against each class and selecting the very one which received
the smallest number of votes–against. Although the idea of voting–against seems
to be pedantic at first sight, it allows a quite efficient way to compute the final
prediction [11] and enables us to compute a closed–form estimation of the class
posterior probabilities P (i|v) [17]. Given that ǫji is defined as the probability
P (Cij(v) = i|γ(v) = j) (i.e. classifier Cij outputs i though the sample belongs
to class j) and wi denotes the a–priori class probability of class i, the logarithm
of the class posterior probability of class i can be calculated by

logP (i|v) = K + logwi+

∑

i6=j

log

(

ǫji, if Cij(v) = j;
1− ǫijwj

1− wj

if Cij(v) = i

)

+

∑

k,i6=j

log

(

1− ǫkjwj

1− wj

if Ckj(v) = k;
1− ǫjkwk

1− wk

if Ckj(v) = j

)

.

(1)

The error terms ǫji can be easily estimated in the training stage of the system
from the outputs of classifier Cij when presenting samples v, γ(v) 6= i, j. Fur-
ther, the term K is simply a constant which is of no particular relevance for
determining the final prediction. By using (1) we determine the predicted class
label k (or equivalently the predicted in vivo staging of the endoscopy image) of
a feature vector v by k = argmaxi log(P (i|v)).

4 Experimental Results

Our image database contains 484 RGB images of size 256 × 256, acquired in
2005/2006 at the Department of Gastroenterology and Hepatology (Medical
University of Vienna) using a magnification endoscope (Olympus Evis Exera



CF–Q160ZI/L) with a magnification factor of 150x. To enhance visual appear-
ance, dye–spraying with indigo–carmine was applied and biopsies or mucosal
resections were taken to obtain a histopathological diagnosis (our ground truth).
For pit–patterns I,II and V, biopsies were taken, since these types need not be
removed. Lesions of pit–pattern types III–S,III–L and IV have been removed en-
doscopically. Table 1 lists the number of image samples per class. We use exactly

Table 1. Number of image samples per pit–pattern.

I II III–L III–S IV V

126 72 62 18 146 60

the same setup for feature extraction as presented in the original works [8–10],
discussed in Sect. 3. The maximum decomposition depth of the wavelet trans-
forms is set to J = 6. Regarding the dimensionality d of the resulting feature
spaces F (using the DT–CWT), we obtain d = 18J for [9], d = 36J for [8] and
d = 18J for [10]. In case the DWT is used for the WECS approach, we obtain
d = 9J . Table 2 lists the maximum leave–one–out crossvalidation accuracies for
all feature extraction approaches and the two classifier combining schemes com-
pared to the highest accuracies achieved in the original (color–extended) works.
Since most of the results – especially between the combining schemes – are very
similar, we conduct a McNemar–test [18] to test for statistically significant dif-
ferences at the 5% significance level. The null–hypothesis H0 is that there is no
significant difference. A ’+’ indicates a rejection of H0, while a ’−’ indicates that
H0 could not be rejected. Column four of Table 2 lists the McNemar–test re-
sults when comparing the combining schemes, column six lists the results when
comparing the original work to the voting–against (first ± entry) and class pos-
terior probability estimation (second ± entry) approach. As we can see, the

Table 2. Classification accuracy results for six different feature sets and the two com-
bining approaches together with the McNemar–test results.

Voting–Against Cutzu [17] Original Work

DWT & WECS [10] 90.08 91.53 + 79.96 ++
DT–CWT & WECS [10] 95.04 95.25 − 86.57 ++
DT–CWT & Classic [8] 96.69 97.11 − 93.18 ++
DT–CWT & Weibull [8] 97.11 97.31 − 94.01 ++
DT–CWT & CES [9] 97.31 97.73 − 88.84 ++
DWT & CES [9] 93.18 94.43 + 84.09 ++

best overall accuracy is obtained by the DT–CWT & CES features with 97.73%.
We further notice that in the majority of cases, there is no significant difference
between direct voting–against and class posterior probability estimation. How-
ever, compared to the original works, the OAO results are significantly superior
with an average increase in leave–one–out crossvalidation accuracy of ≈ 8%. To



get an impression of the misclassifications per class, Table 3 shows the confusion
matrix of the DT–CWT & CES result. By breaking down the six–class problem
to the two–class problem (see Sect. 2) we obtain an overall leave–one–out accu-
racy of 99.59%, which is considerably higher than in the original works. As a last

Table 3. Detailed confusion matrix results for the DT–CWT & CES features using
Cutzu’s class posterior probability estimation.

I II III–S III–L IV V

I 123 3 0 0 0 0
II 4 67 0 0 1 0

III–S 0 0 62 0 0 0
III–L 0 0 0 18 0 0
IV 1 0 0 0 145 0
V 0 0 0 0 2 58

note, we remind that although we use leave–one–out crossvalidation, all reported
accuracies are actually training accuracies. Since high–magnification endoscopy
is a rather new method for the diagnosis of colorectal cancer, there exists a
lack of data material which prevents to separate an independent set of test–
images. As a result, it is highly probable that the accuracies are overestimated
in a sense. Nevertheless, our results clearly indicate that computer–assisted pit–
pattern classification based on the visual appearance of the colon mucosa can
predict the histological results to a large extent.

5 Conclusion

In this paper6, we have exploited the idea of combining a number of two–class
classifiers to obtain an diagnostic prediction for high–magnification colonoscopy
images. Our results show a remarkable improvement in leave–one–out crossval-
idation accuracy compared to previous works. Since most of the computational
effort (mainly feature selection) resides in the training stage there is no limiting
factor which might prevent practical application. Depending upon the availabil-
ity of a larger dataset, future research includes an evaluation of the approach
using clearly separated training and test sets which is currently impossible.
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