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ABSTRACT

This paper aims at efficient, blind detection of additive
spread-spectrum watermarks in the DWT domain. In our
approach, the marginal distributions of the DWT detail
subband coefficients are modeled either by the General-
ized Gaussian distribution or by the recently proposed one-
parameter Cauchy distribution. We investigate the computa-
tional demands for parameter estimation, hypothesis testing
and threshold selection. Further, we discuss the tradeoff be-
tween computation time and detection accuracy.

1. INTRODUCTION

Watermarking has been proposed as a technology to ensure
copyright protection by embedding an imperceptible, yet de-
tectable signal in digital multimedia content such as images
or video [1]. Many detection approaches for additive wa-
termarks embedded in Discrete Cosine Transform (DCT) or
Discrete Wavelet Transform (DWT) coefficients have been
proposed in literature so far [2, 4]. For blind watermarking,
i.e. when detection is performed without reference to the un-
watermarked signal, the host transform coefficients are con-
sidered as noise from the viewpoint of signal detection. If we
assume Gaussian noise, it is known that the optimal detector
is the straightforward linear-correlation (LC) detector [6].

Unfortunately, DCT and DWT coefficients do not obey a
Gaussian law in general which renders the LC detector sub-
optimal and modeling the host signal becomes crucial for
detection performance [4]. The authors derive an optimal
detector for additive watermarking in DCT transform coeffi-
cients following a Generalized Gaussian Distribution (GGD).
In [2], it is shown that the mid-frequency DCT coefficients
can also be modeled by the family of symmetric alpha-stable
distributions and a detector for Cauchy distributed DCT co-
efficients is derived following the framework of [4]. How-
ever, both approaches are based on the strong assumption
that the watermark embedding power is known to the de-
tector. In [11], a new watermark detector based on the Rao
hypothesis test [12] is proposed for watermark detection in
GGD noise. The detector is asymptotically optimal (i.e. for
large data records) and does not depend on knowledge about
the embedding power any more.

In this work we are not only concerned about the water-
mark detection performance but also about the computational
effort. With efficient watermark detection in mind, we com-
pare the Rao-Cauchy detector first presented in [9] against
state-of-the-art detectors. The effort for parameter estima-
tion of the host signal model is often neglected. Clearly, us-
ing fixed, pre-determined values (such as proposed in [4])
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is suboptimal in terms of detection performance. Alterna-
tively, a number of fast parameter estimation methods [8,14]
provide a tradeoff between computational effort versus de-
tection performance. In this paper we evaluate the impact
of fast parameter estimation for the GGD and Cauchy host
signal model on watermark detection performance.

Section 2 reviews two statistical models for DWT coeffi-
cients and the watermark detection problem. Fast parameter
estimation methods are devised in Section 3 before we assess
their tradeoff in Section 4. Runtime is compared in Section
5 before we conclude with a discussion of open problems.

2. STATISTICAL MODELS & DETECTION

We assume that a bipolar watermark sequence is embedded
in DWT transform coefficients and that the watermark em-
bedding power is unknown at the detection stage. We de-
note with H j, V j and D j the detail subbands with horizon-
tal, vertical and diagonal orientation at scale j of the pyra-
midal DWT. When it is not necessary to speak of a specific
subband, N is the number of subband coefficients and the co-
efficients are given by x[1], . . . ,x[N] (vector notation). The
elements of the bipolar watermark sequence used for mark-
ing an arbitrary subband are denoted by w[t],1 ≤ t ≤ N with
w[t] ∈ {+1,−1}. For the rest of the paper, small boldface
letters denote vectors, big boldface vectors denote matrices.
Additive embedding of the watermark sequence is performed
by

y[t] = x[t]+αw[t], t ∈ 1, . . . ,N (1)

where α ∈ R denotes the watermark embedding power, y[t]
denotes a watermarked transform coefficient and x[t] denotes
a host image transform coefficient. To derive a hypothesis
test, we assume that the transform coefficients x[t] represent
a random sample drawn from some underlying probability
density function (PDF). For blind detection, the host signal
acts as noise and accurate modeling is the key element in
deriving a detector.

2.1 Models for Host Signal Noise

It is commonly accepted that the marginal distributions of the
detail subband coefficients of natural images are highly non-
Gaussian but can be well modeled by the GGD (see [4, 10]).
The PDF of the GGD is given by

p(x|b,c) = c
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with −∞ < x < ∞ and b,c > 0. In contrast to the Gaussian
distribution (which arises as a special case of the GGD for
c = 2), the GGD is a leptokurtic distribution which allows
heavy-tails. A second model is the one-parameter Cauchy
distribution which is a member of the family of symmet-
ric alpha-stable (SαS) distributions. This model has already



been successfully employed for blind watermarking of low-
to mid-frequency DCT coefficients [2] and DWT detail sub-
band coefficients [9]. The PDF of the Cauchy distribution
with location parameter −∞ < δ < ∞ and shape parameter
γ > 0 is given by [7]

p(x|γ,δ ) = 1

π

γ

γ2 +(x− δ )2
. (3)

In contrast to the Gaussian distribution, the tails of the
Cauchy distribution decay at a rate slower than exponential,
hence we observe heavy-tails in the PDF.

2.2 Hypothesis Tests for Watermark Detection

Conditioned on one of the noise models from above, we
can pursue two ways to derive a watermark detector. First,
the most widely-used approach is to construct a Likelihood-
Ratio test. Based on the embedding rule of Eq. (1), we can
formulate a two-sided parameter test

H0 : α = 0,θ (no/other watermark)

H1 : α 6= 0,θ (watermarked)
(4)

with θ denoting a vector of unknown parameters. These pa-
rameters are not directly related to the detection problem, but
affect the shape of the PDFs under H0 (null-hypothesis) and
H1 (alternative hypothesis). Depending on the noise model,
θ contains either the shape and scale parameter of the GGD
or the shape parameter of the Cauchy distribution. Given that
α and θ are known a-priori we can formulate a Neyman-
Pearson (NP) detector to decide H1 if

L(y) =
p(y;H1)

p(y;H0)
> T (5)

where T denotes a detection threshold obtained by exploit-
ing the NP criterion [6]. The ratio in Eq. (5) is termed the
Likelihood-Ratio and the corresponding test will be referred
to as the Likelihood-Ratio test (LRT). Conditioned on the
two host noise models, we obtain the LRT statistics for the
Generalized Gaussian model (LRT-GG) [4]

ρ(y) =
1

bc

N

∑
t=1

(|y[t]|c −|y[t]−α ·w[t]|c) (6)

and the Cauchy model (LRT-C) [2]

ρ(y) =
N

∑
t=1

log

(

γ2 + y[t]2

γ2 +(y[t]−α ·w[t])2

)

. (7)

Obviously, discarding the assumptions of known α and θ ,
we face a detection problem where we have a nuisance pa-
rameter θ and a signal w[t] of unknown amplitude α . In
practice, it is assumed that the watermark embedding process
does not alter the noise characteristics significantly which al-
lows to estimate θ and α from the watermarked image. To
be rigorous, missing a-priori knowledge of α and θ leads to
a so called Generalized Likelihood Ratio Test (GLRT) with
the disadvantage that we need to determine the Maximum-
Likelihood estimate of α under both H0 and H1 which is dif-
ficult to obtain in case of non-Gaussian noise [5]. The prob-
lem can be remedied by using the Rao hypothesis test instead
which has the same asymptotic performance as the GLRT but
only requires computation of the MLEs under H0 [5]. We
obtain the test statistics of the Rao test conditioned on the
Generalized Gaussian model (R-GG) [11]

ρ(y) =
∑N

t=1 sgn(y[t]) ·w[t] · |y[t]|c
∑N

t=1 |y[t]|2c
(8)

and the Cauchy host noise model (R-C) [9]

ρ(y) =

[

N

∑
t=1

y[t]w[t]

γ̂2 + y[t]2

]2
8γ̂2

N
. (9)

2.3 Threshold Determination

Determining a reasonable detection threshold differs signif-
icantly depending on the hypothesis test and noise model.
According to [2, 4] the detection statistics Eq. (6) and (7)
follow a Gaussian law with mean µ0 under H0 and mean
µ1 under the alternative hypothesis. Further µ0 = −µ1 and
the variances under both hypothesis are approximately equal,
σ2

0 = σ2
1 . The probability of false alarm (Pf ) can now be for-

mulated as

Pf =
1

2
erfc

(

T − µ0√
2σ

)

(10)

which allows us to set T =
√

2σ erfc−1(2Pf )+ µ0 according
to the NP criterion [1].

According to [6], both Rao test statistics, Eq. (8) and
(9), follow a χ2

1 distribution with one degree of freedom un-

der H0. Exploiting the relation Qχ2
1
(x) = 2Q(

√
x) where the

functions Q(·) and Qχ2
1
(·) express the right-tail probabilities

of the Gaussian and χ2
1 distribution, resp., we can write Pf as

Pf = erfc

(

√

T

2

)

and express T =

[

Q−1

(

Pf

2

)]2

.

(11)
Under the alternative hypothesis H1, both Rao test statistics
follow a non-central Chi-Square distribution χ2

λ with non-

centrality parameter λ shown in [11] and [9], resp.

3. PARAMETER ESTIMATION

In this section, we discuss the parameter estimation process
of the aforementioned detectors due to the heavy impact on
the computational performance. For the GGD, the method
of Maximum-Likelihood is widely used. Let x[1], . . . ,x[N]
denote i.i.d. random variables following a GGD with shape
β and scale α , the MLE of β requires to find the root of the
transcendental equation [3]

1+
Ψ(1/β̂)+ log

(

β̂
N ∑N

i=1 |xi|β̂
)

β̂
−

∑N
i=1 |xi|β̂ log(|xi|)

∑N
i=1 |xi|β̂

=: g(β ).

(12)

For Newton-Raphson root-finding, we need the derivative
g′(β ) w.r.t. β which involves computation of the Digamma

Ψ(·) and Trigamma Ψ
′
(·) function. The update step of

the Newton-Raphson iteration then follows as βn+1 = β̂n −
g(β̂n)/g′(β̂n). Apart from the computational difficulties in
solving Eq. (12), another problem is the search for a good
starting value β1 for the iteration. Usually moment estimates
are employed to ensure a starting value close to the MLE for
fast (quadratic) convergence. Mallat [10] relates the ratio of
the first two sample moments m1 and m2 given by

m1 =
1

N

N

∑
i=1

|xi| and m2 =
1

N

N

∑
i=1

|xi|2, (13)



to the theoretical moments as

m2
1

m2

=
Γ2(2/β )

Γ(1/β )Γ(3/β )
. (14)

Lacking analytic expressions, we must employ numerical
methods. Do and Vetterli [3] employ a lookup table and lin-
ear interpolation to speed up estimation of β1. However, an-
other computationally fast method is presented in [8]. By
defining the right-hand side of Eq. (14) as F(β ), the idea
is to find an invertible approximation of F(β ). A candidate
function proposed in [8] is

R(β ) = exp(a+ bβ c) (15)

with suitable coefficients a,b and c. R(β ) can easily be in-
verted and gives the estimate for β as follows

β̂ =

(

log(R)− a

b

)1/c

with R =
m2

1

m2

. (16)

Solving this non-linear curve fitting problem leads to the co-
efficients a = −0.2667, b = −0.4172 and c = −1.1585. In
contrast to [8], we do not cut the range of β into a set of in-
tervals and optimize a,b and c separately for each interval.
The estimate can either be used directly or plugged in as a
starting value for the Newton-Raphson iteration. We will use

it in the latter way. Once we obtain the MLE β̂ , the MLE of
α̂ has an explicit expression

α̂ =

(

β̂

N

N

∑
i=1

|xi|β̂
)

.

1/β̂

(17)

Computationally, we favor the invertible approximation of
F(β ) together with evaluation of Eq. (17) over the iterative
approach based on Eq. (12). We further note that another re-
cently proposed estimation method exists [13] based on ex-
ploiting a convex shape equation, leading to a computation-
ally appealing estimation procedure. However, this method
also requires a numerical root finding procedure which is
why we omit further discussion here.

Regarding the estimation of the Cauchy distribution pa-
rameter γ , we start with the ML estimation procedure. Given
that x[1], . . . ,x[N] denote realizations of N i.i.d. random vari-
ables following a Cauchy distribution with δ = 0, the ML
estimate of γ is given as the solution (see [7]) to

1

N

N

∑
t=1

2

1+(x[t]/γ̂)2
− 1 = 0 (18)

which has to be solved numerically, e.g. using Newton-
Raphson. For that purpose, define the left hand side of Eq.
(18) as a function of γ̂ , denoted by h(γ̂). The estimate of γ in
the n-th iteration (n > 1) of the Newton-Raphson algorithm
is computed by γ̂n+1 = γ̂n −h(γ̂n)/h′(γ̂n). Here, h′(·) denotes
the first derivative of h w.r.t. γ , given by

h′(γ) =
4γ

N

N

∑
t=1

x[t]2

(γ2 + x[t]2)2
. (19)

As the starting value γ̂1 for the numerical calculation, an es-
timation value based on sample quantiles [7] can be used

γ̂1 = 0.5(xp − x1−p) tan(π(1− p)), (20)

with 0.5 < p < 1 and xp,x1−p denoting the sample quantiles.
Moment estimation is not possible in case of the Cauchy dis-
tribution, since the moments do not exist. As with the GG
shape parameter β , it is of course possible to use Eq. (20)
alone or even set γ to a fixed value.

Figure 1: Grayscale test images (Lena, Elaine, Barbara,
Boat, Bridge, Peppers)

4. IMPACT ON DETECTION PERFORMANCE

To study the impact of different host signal parameter es-
timation approaches on the detection performance, we plot
the detection performance as a function of the Cauchy γ and
GGD shape parameter c [4]. Given an estimate of the distri-

bution parameter λ̂ under H1 and the threshold T , the esti-

mated probability of missing the watermark (P̂m) in case of
the Rao detectors can be directly computed from

P̂m = 1−Q

(√
T −

√

λ̂
)

+Q

(√
T +

√

λ̂
)

(21)

and in case of the LRT detectors we have to resort to

P̂m = 1−Q

(

T − µ̂1

σ̂

)

. (22)

The estimates λ̂ , µ̂1 and σ̂ are calculated from the detec-
tion responses under H1 when embedding and detecting
M = 1000 random watermarks. The complementary tests for
checking whether the detection statistics actually follow the
assumed distributions (which allows reliable threshold deter-
mination) are explained in Section 5. Since a non-central
Chi-Square random variable with one degree of freedom and
non-centrality parameter λ is equal to the square of a Gaus-

sian random variable with mean
√

λ and unit variance, we
can estimate λ from the responses ρ1, . . . ,ρM as follows

λ̂ =

(

1

M

M

∑
i=1

√
ρi

)2

(23)

and µ̂1, σ̂
2 are estimated by the sample mean and variance.

In Figure 2, we plot the LRT-Cauchy and Rao-Cauchy de-

tector performance in terms of P̂m for a probability of false

alarm Pf = 10−6 as a function of the Cauchy γ parameter for
the six test images shown in Figure 1. The γ parameter varies
between 0.1 and 45 with a step size of 0.1. The detector per-
formance w.r.t. to the MLE and its fast approximation using
quantile estimation, Eq. (20), are denoted by a circle and dia-
mond, resp. We observe that the fast, approximative γ is very
close to the ML estimate and the difference has a negligible
impact on watermark detection performance. Further, it is
evident that neither the ML nor the quantile estimation ap-
proach reaches the peak detection performance. We can see,
however, that the parameter estimates are close enough to
achieve good performance. The steep ascent of the curve to
the left suggests that choosing too small values for γ quickly
deteriorates detection performance.
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Figure 2: Detection performance of the LRT-Cauchy and

Rao-Cauchy as a function of γ at DWR 20 dB; Pf = 10−6
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Figure 3: Detection performance of the LRT-GGD and Rao-

GGD as a function of c at DWR 20 dB; Pf = 10−6

Figure 3 shows the plots for the LRT-GG and Rao-GG
detector. The GGD shape parameter c varies from 0.02 to
4. Again, the fast parameter estimate using the invertible ap-
proximation to F(β ), Eq. (16), is reasonably close to the ML
estimate. In case of the LRT-GG detector, peak performance
is missed by only a small margin. However, in case of the
Rao-GG detector, the ML estimate of the shape parameter is
far off the value achieving maximum detection performance.

Based on the experiments we conclude that fast, ap-
proximate estimation of the shape parameter can replace the
ML estimate without significantly reducing detection per-
formance. For the Cauchy detectors, ML estimation of the
shape parameter is not equivalent to searching the parame-
ter value that maximizes detection performance, as has been
noted earlier for the LRT-GG detectors [4]. For the Rao-
GG detector, the parameter’s ML estimate does not achieve
good detection performance for many images. In Nikolaidis’
work [11], the detection results for the Rao-GG detector vary
widely across images and the Rao-GG sometimes performs
even worse than the LC detector. We speculate that the rea-
son is the same that becomes evident when observing the gap
between the peak performance and the estimate parameter
values in Figure 3. For the LRT-GG based detector, the use
of a fixed, image independent shape parameter has been pro-
posed (e.g. 0.8 for DWT coefficients [4]) to save the estima-
tion effort. We can immediately read off the resulting per-
formance from the plots in Figure 3 and also compare with
the performance of the LC detector (setting c = 2). For the
Cauchy host signal model, no fixed value for the γ parameter
has been proposed yet. A good candidate as an image in-
dependent parameter is γ = 8 for the DWT details subband.
Comprehensive tests with two large natural image databases
confirm our observations.

5. EXPERIMENTAL RESULTS

For the experiments in Section 4 we use the six grayscale test
images of size 256× 256 shown in Figure 1. The watermark
is embedded in the H2 subband and α is adjusted to reach
a Document-to-Watermark Ratio (DWR) of 20 dB for each
image. We employ the biorthogonal CDF 9/7 filter. The re-
sulting PSNR is 48.41, 49.28, 47.95, 50.40, 49.51 and 47.88
dB for the Lena to Peppers image, resp. Due to the high
PSNR, no visual degradation can be noticed. The implemen-

tation1 of the detectors and all experiments were conducted
in MATLAB. We calculate the detector responses under H0

and H1 for 1000 randomly generated watermarks and con-
duct Chi-Square Goodness-of-Fit (GoF) tests at 5% signifi-
cance to verify that the detection statistics are either Gaussian
(in case of LRT-C, LRT-GG) or Chi-Square with one degree
of freedom (in case of R-GG, R-C). Assuming that there is
no rejection of the null-hypothesis of the Chi-Square GoF
test, we can reliably estimate the detection statistic param-
eters and check whether the estimates conform to the theo-
retical values. This is especially important under H0, since
a strong deviation impedes determination of the threshold T
according to the probability of false-alarm. In contrast to the
LRT detectors, the Rao test does not require computation of
detection statistic parameters under H0 since ρ ∼ χ2

1 and the
threshold can easily be calculated from Eq. (11).

Before we examine runtime results for parameter esti-
mation and detection, we compare the number of required

1Software available at http://www.wavelab.at/sources.



Figure 4: Runtime for signal length N = 1000000

Table 1: Number of arithmetic operations

Detector
Operations

+,− ×,÷ pow , log abs ,sgn
LC N N + 1
LRT-GG [4] 3N 2 2N + 1 2N
LRT-C [2] 4N 5N N
R-GG [11] 2N 3N + 2 N 2N
R-C [9] 2N 2N + 4

arithmetic operations to calculate the detection statistics for
a signal of length N. Table 1 gives the number of additions
and subtractions (+,−), multiplications and divisions (×,÷),
logarithms and exponentiations (log,pow) as well as absolute
and signum (abs,sgn) operations. From these numbers it is
obvious that the LC detector is by far the simplest in terms
of arithmetic operations, since it involves only summations
and multiplications of floating point numbers. However, the
R-C detector is only slightly more expensive, since the expo-
nentiations in Eq. (9) merely involve integer exponents and
additions as well as multiplications which can be very effi-
ciently performed with few CPU cycles. In contrast to that,
the LRT-C detector requires N computations of the logarithm
and the LRT-GG detector even requires exponentiations with
floating point numbers, which is quite expensive in terms of
CPU cycles; see Eq. (6) and (7).

In Figure 4 we compare the parameter estimation and wa-
termark detection runtime in seconds for a signal of length
N = 1000000 on an Intel Core2 2.6 GHz CPU running MAT-
LAB 7.4. Results have been averaged over 10 test runs. Note
that the relative detection runtimes are in good agreement
with the analytical comparison provided in Table 1. The
detectors based on the Cauchy host model are significantly
faster than the LRT-GG and R-GG detector. The R-C de-
tector leads by a small margin. For the LC detector, no pa-
rameter estimation is required. GGD and Cauchy parameter
estimation has been performed with the fast, approximative
methods, see Eq. (16) and (20), resp. Note that computation
of sample quantiles for the γ estimate requires sorting the
data while the moment estimates can be computed with lin-
ear effort; so for larger N, the GGD parameter estimation will
turn out faster. Our implementation of the described MLE
methods is significantly slower (by a factor of five to ten ac-
cording to experiments; we have to omit details here) due to
the iterative Newton-Raphson approach.

6. CONCLUSION

We have compared five blind detectors for additive, spread-
spectrum watermarking in terms of runtime efficiency for pa-
rameter estimation and hypothesis testing. Further, the im-
pact of fast, approximate parameter estimation for the GGD
and Cauchy host noise model was assessed. The Rao-Cauchy
detector turned out attractive not only in terms of runtime ef-
ficiency but also due to straightforward threshold determina-
tion. As further research, we plan to investigate the tradeoff
for fixed parameter settings over large test image sets.
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