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Abstract. This paper considers the problem of regressing data points
on the Grassmann manifold over a scalar-valued variable. The Grassman-
nian has recently gained considerable attention in the vision community
with applications in domain adaptation, face recognition, shape analy-
sis, or the classification of linear dynamical systems. Motivated by the
success of these approaches, we introduce a principled formulation for
regression tasks on that manifold. We propose an intrinsic geodesic re-
gression model generalizing classical linear least-squares regression. Since
geodesics are parametrized by a starting point and a velocity vector, the
model enables the synthesis of new observations on the manifold. To ex-
emplify our approach, we demonstrate its applicability on three vision
problems where data objects can be represented as points on the Grass-
mannian: the prediction of traffic speed and crowd counts from dynamical
system models of surveillance videos and the modeling of aging trends in
human brain structures using an affine-invariant shape representation.

Keywords: Geodesic regression; Grassmann manifold; Traffic speed pre-
diction; Crowd counting; Shape regression.

1 Introduction

Data objects in many computer vision problems admit a subspace represen-
tation. Examples include feature sets obtained after dimensionality reduction
via PCA, or observability matrix representations of linear dynamical systems.
Assuming equal dimensionality, such subspace representations allow to inter-
pret the data as points on the Grassmann manifold G(p, n), i.e., the manifold of
p-dimensional linear subspaces of Rn. The seminal work of [10] and the introduc-
tion of efficient processing algorithms to manipulate points on the Grassmannian
[12] has led to a variety of principled approaches to solve different vision and
learning problems. These include domain adaptation [13,29], gesture recognition
[19], face recognition under illumination changes [20], or the classification of
visual dynamic processes [27]. Other works have explored subspace estimation
via conjugate gradient decent [21], mean shift clustering [6], and the definition
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Fig. 1. Illustration of Grassmannian geodesic regression and inference. At the point
marked ⊗, the inference objective for (i) traffic videos is to predict the independent
variable r∗ (here: speed), whereas for (ii) corpus callosum shapes we seek the manifold-
valued Y∗ for a value of the independent variable (here: age). For illustration, elements
on the Grassmannian are visualized as lines through the origin, i.e., Yi ∈ G(1, 2).

of suitable kernel functions [14,18] that can be used with a variety of machine
learning techniques.

While many vision applications primarily focus on performing classification
or recognition tasks on the Grassmannian, the problem of regression has gained
little attention (see §2). Yet, this statistical methodology has the potential to
address many problems in a principled way. For instance, it enables predictions
of an associated scalar-valued variable while, at the same time, respecting the
geometry of the underlying space. Further, in scenarios such as shape regression,
we are specifically interested in summarizing continuous trajectories that cap-
ture variations in the manifold-valued variable as a function of the scalar-valued
independent variable. Fig. 1 illustrates these two inference objectives. While
predictions about the scalar-valued variable could, in principle, be formulated
within existing frameworks such as Gaussian process regression, e.g., by using
Grassmann kernels [14,18], it is not clear how to or if it is possible to address
the second inference objective in such a formulation.

Contribution. We propose a formulation that directly fits a geodesic to a col-
lection of data points. This is beneficial for several reasons. First, it is a simple
and natural extension of linear regression to the Grassmannian; second, it pro-
vides a compact representation of the complete geodesic path; third, since the
geodesic is parametrized by a starting point and a velocity, we can freely move
along it and synthesize additional observations; fourth, it opens up the possibil-
ity of statistical analysis on Grassmannian geodesics; finally, this concept easily
extends to more complex models, such as piecewise regression. The approach
is extremely versatile which we demonstrate on three vision problems where
data objects admit a representation on the Grassmannian. First, we show that
the geodesic regression model can predict traffic speed and crowd counts from
dynamical system representations of surveillance video clips without any pre-
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processing. Second, we show that this model allows us to capture aging trends
of human brain structures under an affine-invariant representation of shape [3].
These three different vision problems are solved in a common framework with
minor parameter adjustments. While the applications presented in this paper are
limited, our method should, in principle, be widely applicable to other problems
on the Grassmann manifold, previously proposed in the vision literature.

The paper is structured as follows: §2 reviews closely related work; §3 intro-
duces our formulation of Grassmannian geodesic regression (GGR) and presents
two numerical solution strategies. §4 shows experimental results and §5 concludes
the paper with a discussion of the main results, limitations and future work.

2 Related Work

While differential geometric concepts, such as geodesics and intrinsic higher-
order curves, have been well studied [23,5], their use for regression has only
recently gained interest. A variety of methods extending concepts of regression
in Euclidean spaces to nonflat manifolds have been proposed. Rentmeesters [24],
Fletcher [11] and Hinkle et al. [15] address the problem of geodesic fitting on
Riemannian manifolds, mostly focusing on symmetric spaces. Niethammer et
al. [22] generalized linear regression to the manifold of diffeomorphisms to model
image time-series data, followed by works extending this concept [16,25,26].

In principle, we can distinguish between two groups of approaches: first,
geodesic shooting based strategies which address the problem using adjoint meth-
ods from an optimal-control point of view [22,16,25,26]; the second group com-
prises strategies which are based on optimization techniques that leverage Ja-
cobi fields to compute the required gradients [11,24]. Unlike Jacobi field ap-
proaches, solutions using adjoint methods do not require computation of the
curvature explicitly and easily extend to higher-order models, e.g., polynomi-
als [15], splines [26], or piecewise regression models. Our approach is a represen-
tative of the first category which ensures extensibility to more advanced models.

In the context of computer-vision problems, Lui [19] recently adapted the
known Euclidean least-squares solution to the Grassmann manifold. While this
strategy works remarkably well for the presented gesture recognition tasks, the
formulation does not guarantee to minimize the sum-of-squared geodesic dis-
tances within the manifold. Since, in the regression literature, this is the natural
extension of least-squares to Riemannian manifolds, the geometric and varia-
tional interpretation of [19] remains unclear. In contrast, we address the prob-
lem from an energy-minimization point of view which allows us to guarantee, by
design, consistency with the geometry of the manifold.

To the best of our knowledge, the closest works to ours are [2] and [24].
Batzies et al. [2] discusses only a theoretical characterization of the geodesic
fitting problem on the Grassmannian, but does not provide a numerical strategy
for estimation. In contrast, we derive alternative optimality conditions using
principles from optimal-control. These optimality conditions not only form the
basis for our shooting approach, but also naturally lead to a convenient iterative
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algorithm. By construction, the obtained solution is guaranteed to be a geodesic.
As discussed above, Rentmeesters [24] follows the Jacobi field approach. While
both optimization methods have the same computational complexity for the
gradient, i.e., O(np2) on the Grassmannian G(p, n), it is non-trivial to generalize
[24] to higher-order or piecewise models. Our approach, on the other hand, offers
an alternative, simple solution that is (i) extensible and (ii) easy to implement.

3 Grassmannian Geodesic Regression (GGR)

To develop the framework for GGR, we first briefly review the Riemannian
structure of the Grassmannian. For a more detailed treatment of this topic we
refer the reader to [10,4,1]. We then discuss exact geodesic matching for two
points and inexact geodesic matching for multiple points in §3.1 and present two
strategies to solve these problems in §3.2 and §3.3.

Riemannian structure of the Grassmann manifold. The Grassmann man-
ifold G(p, n) is defined as the set of p-dimensional linear subspaces of Rn, typ-
ically represented by an orthonormal matrix Y ∈ Rn×p, such that the column
vectors span Y, i.e., Y = span(Y). The Grassmannian can equivalently be de-
fined as a quotient space within the special orthogonal group SO(n) as G(p, n) :=
SO(n)/(SO(n−p)×SO(p)). The canonical metric gY : TYG(p, n)×TYG(p, n)→
R on G(p, n) is given by

gY(∆Y ,∆Y) = tr ∆>Y∆Y = tr C>(In −YYT )C , (1)

where In denotes the n×n identity matrix, TYG(p, n) is the tangent space at Y,
C ∈ Rn×p arbitrary and Y is a representer for Y. Under this choice of metric, the
arc-length of the geodesic connecting two subspaces Y,Z ∈ G(p, n) is related to
the canonical angles φ1, . . . φp ∈ [0, π/2] between Y and Z as d2(Y,Z) = ||φ||22.
In what follows, we slightly change notation and use d2(Y,Z), with Y = span(Y)
and Z = span(Z). In fact, the (squared) geodesic distance can be computed from
the SVD decomposition U(cosΣ)V> = Y>Z as d2(Y,Z) = || cos−1(diagΣ)||2
(cf. [12]), where Σ is a diagonal matrix with principal angles φi.

Finally, consider a curve γ : [0, 1] → G(p, n), r 7→ γ(r) with γ(0) = Y0 and
γ(1) = Y1, where Y0 represented by Y0 and Y1 represented by Y1. The geodesic
equation for such a curve on G(p, n) is given (in terms of representers) by

Ÿ(r) + Y(r)[Ẏ(r)>Ẏ(r)] = 0, with Ẏ(r)
.
=

d

dr
Y(r) . (2)

Eq. (2) also defines the Riemannian exponential map on the Grassmannian as an
ODE for convenient numerical computations. Integrating the geodesic equation,
starting with initial conditions, “shoots” the geodesic forward in time.

3.1 Exact/Inexact geodesic matching

Exact matching between two points. To generalize linear regression in Eu-
clidean space to geodesic regression on the Grassmannian, we replace the line
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equation by the geodesic equation (2), i.e., the Euler-Lagrange equation of

E(Y(r)) =

∫ r1

r0

tr Ẏ(r)>Ẏ(r) dr, such that Y(r0) = Y0, Y(r1) = Y1 (3)

and Ẏ(r) = (In−Y(r)Y(r)>)C. To generalize residuals, we need the derivative
of the squared geodesic distance of points to the regression geodesic with respect
to its base point, i.e., ∇Y0

d2(Y0,Y1). Since the squared distance can be formu-
lated as d2(Y0,Y1) = minY(r)E(Y(r)) for r0 = 0 and r1 = 1, we can derive

∇Y0
d2(Y0,Y1), at optimality, as ∇Y0

d2(Y0,Y1) = −2Ẏ(0) (see supplementary
material for details). The geodesic connecting the subspaces spanned by Y0,Y1,
and its initial condition Ẏ(0) can be efficiently computed following [12], result-
ing in an efficient computation of ∇Y0

d2(Y0,Y1) which will be used to solve
the regression problem with multiple points. Since the geodesic can connect two
points exactly, we refer to the case of two points as the exact matching problem.

Inexact matching for multiple points. In order to fit a geodesic, given by
an initial point Y(r0) and an initial velocity Ẏ(r0), to a collection of points
{Yi}N−1

i=0 at N measurement instances {ri}N−1
i=0 , exact matching is relaxed to

inexact matching through the minimization of the energy

E(Y(r0), Ẏ(r0)) = α

∫ rN−1

r0

tr Ẏ(r)>Ẏ(r) dr +
1

σ2

N−1∑
i=0

d2(Y(ri),Yi), (4)

fulfilling the constraints for initial conditions Y(r0)>Y(r0) = Ip, Y(r0)>Ẏ(r0) =
0, and the geodesic equation of (2); α ≥ 0 and σ > 0. The search for the curve
Y(r) that minimizes this energy is denoted as inexact matching. As in the Eu-
clidean case, Y(r0) and Ẏ(r0) can be interpreted as the initial intercept and
slope that parametrize the geodesic. The first term in (4) is a norm-penalty on
the slope of the geodesic, whereas α and σ are balancing constants. In practice,
α is typically set to 0, unless we have specific prior knowledge about the slope,
similar to a slope-regularized least-squares fit.

3.2 Approximate solution by pairwise searching

One possibility to finding a geodesic that best approximates all data points {Yi}
is to adopt an extension of the well-known random sample consensus (RANSAC)
procedure. This consists of picking pairs of points {Ya,Yb}; assuming ra < rb,
we can compute the corresponding initial velocity Ẏ(ra) (using the procedures
of [12]) and then integrate the geodesic equation (2) forward and backward to
span the full measurement interval of all data points {Yi}. As for a geodesic,
Ẏ(r)>Ẏ(r) = const., we can measure the regression energy in (4), given the
geodesic specified by {Ya,Yb}, to evaluate model fit. By either randomly sam-
pling a sufficient number of pairs of data points, or (for small datasets) exhaus-
tively sampling all possible pairs, we obtain the approximate solution as the
geodesic of the data point pair with the smallest energy. This solution, denoted



6 Hong et al.

as GGR (pairwise searching), can be used directly, or to initialize the iterative
numerical solution described in §3.3. Note that by dividing points into inliers
and outliers, given distance thresholds, this defines a RANSAC-like estimation
methodology on the Grassmannian.

3.3 Optimal solution by geodesic shooting

To solve the energy minimization problem in (4), we discuss the shooting solution
for the special case N = 2 first; the general solution then follows accordingly.
Specializing (4) to N = 2 and Y(r0) = Y0, the geodesic determined by two
representers, Y0 and Y1, can be obtained by minimizing the shooting energy

E(Y(r0), Ẏ(r0)) = α tr Ẏ(r0)>Ẏ(r0) +
1

σ2
d2(Y(r1),Y1) (5)

subject to constraints for initial conditions and the geodesic equation. To simplify
computations, we replace the second order geodesic constraint by a system of
first order. That is, we introduce auxiliary variables X1(r) = Y(r) and X2(r) =
Ẏ(r) to rewrite the shooting energy of (5) and its constraints. By adding the
constraints through Lagrangian multipliers, computing the associated variation,
collecting terms and integration by parts, we obtain the optimality conditions
with boundary conditions and constraints as shown in the forward and backward
steps of Algorithm 1. Since the geodesic is determined by the unknown initial
conditions, we need the gradients with respect to the sought-for initial conditions
∇X1(r0)E and ∇X2(r0)E, which are also given in Algorithm 16.

The extension to the full GGR formulation is conceptionally straightforward.
The goal is now to fit a best-approximating geodesic, cf. (4), to N data points
{Yi}N−1

i=0 . Unlike the case for N = 2, instead of a fixed initial condition and

one inexact final matching condition, we have (i) both initial Y(r0) and Ẏ(r0)
free and (ii) multiple inexact matching terms. This creates jump conditions for
the Lagrangian multiplier λ1(r) at each measurement instant when integrating
backward in time. Algorithm 1 performs this computation.

4 Experiments

In the experiments, we demonstrate the versatility of our approach on three
vision problems with data objects represented on the Grassmannian. First, on
traffic speed prediction and crowd counting based on linear dynamical system
models of surveillance video clips and second, on modeling the aging trend that
is visible in the 2D shape of the human corpus callosum.

Dynamical systems as points on the Grassmannian. We demonstrate
GGR in the context of modeling video clips by linear dynamical systems (LDS),
commonly referred to as dynamic texture models [9] in the computer vision liter-
ature. For videos, represented by a collection of vectorized frames y1, . . . ,yτ with

6 More details about the derivation are included in the supplementary material.
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Algorithm 1: Grassmannian geodesic regression (GGR)

Data: {(ri,Yi)}N−1
i=0 , α ≥ 0 and σ > 0

Result: Y(r0), Ẏ(r0)
Set initial Y(r0) and Ẏ(r0), e.g., using pairwise searching of §3.2.
while not converged do

Solve

{
Ẋ1 = X2, X1(r0) = Y(r0),

Ẋ2 = −X1(X>2 X2), X2(r0) = Ẏ(r0)
forward for r ∈ [r0, rN−1].

Solve

{
λ̇1 = λ2X

>
2 X2, λ1(rN−1+) = 0,

λ̇2 = −λ1 + X2(λ>2 X1 + X>1 λ2), λ2(rN−1) = 0
backward with

jump conditions

λ1(ri−) = λ1(ri+)− 1

σ2
∇X1(ri)d

2(X1(ri),Yi)

and ∇X1(ri)d
2(X1(ri),Yi) computed as in §3.1. For multiple

measurements at a given ri, the jump conditions for each measurement
are added up.

Compute gradient with respect to initial conditions:

∇X1(r0)E = −(In −X1(r0)X1(r0)>)λ1(r0−) + X2(r0)λ2(r0)>X1(r0),

∇X2(r0)E = 2αX2(r0)− (In −X1(r0)X1(r0)>)λ2(r0).

Use a line search with these gradients to update Y(r0) and Ẏ(r0) as
described in Algorithm 2 in Appendix A.

end

yi ∈ Rn, the standard dynamic texture model has the form: xk+1 = Axk + wk,
wk ∼ N (0,W); yk = Cxk + vk, vk ∼ N (0,R), with xk ∈ Rp,A ∈ Rp×p and
C ∈ Rn×p. When relying on the prevalent (approximate) estimation approach
of [9], the matrix C is, by design, of (full) rank p (i.e., the number of states) and
by construction we obtain an observable system, where the observability matrix
O = [C (CA) (CA2) · · · (CAp−1)]> ∈ Rnp×p also has full rank. System iden-
tification is not unique in the sense that systems (A,C) and (TAT−1,CT−1)
with T ∈ GL(p)7 have the same transfer function. Hence, the realization sub-
space spanned by O is a point on the Grassmannian G(p, n) and the observability
matrix is a representer of this subspace. In our experiments, we identify an LDS
model for a video clip by its np× p orthonormalized observability matrix.

Shapes as points on the Grassmannian. We also apply GGR in the context
of landmark-based shape analysis. A shape matrix is constructed based on its
m landmarks, L = {(x1, y1, ...); (x2, y2, ...); . . . ; (xm, ym, ...)}. Using SVD on the
shape matrix, i.e., L = UΣV>, we obtain an affine-invariant shape representa-
tion from the left-singular vectors U [3]. This establishes a mapping from the
shape matrix to a point on the Grassmannian (with U as the representative).

7 GL(p) is the general linear group of p× p invertible matrices.
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Fig. 2. Illustration of the datasets: (a) surveillance videos of highway traffic [7] for
speed regression; (b) surveillance videos of a sidewalk [8] for regressing average crowd
count and (c) corpus callosum shapes [11] for shape regression.

4.1 Datasets

Synthetic sine/cosine signals. To first demonstrate GGR on a toy-example,
we embed 25 synthetic 2D sine/cosine signals, sampled at 630 points in [0, 10π],
in R24; the signal frequencies are uniformly sampled in (0, 10). The 2D signals
s ∈ R2×630 are then linearly projected via s = Us, where W ∼ N (0, I24) and
W = UΣV>. Finally, white Gaussian noise with σ = 0.1 is added to s. Given
a collection of training signals, our objective is to predict the signal frequency
based on the LDS models of the 24-dimensional data.

UCSD traffic dataset [7]. This dataset was introduced in the context of
clustering traffic flow patterns with LDS models. It contains a collection of short
traffic video clips, acquired by a surveillance system monitoring highway traffic.
There are 253 videos in total and each video is roughly matched to the speed
measurements from a highway-mounted speed sensor. We use the pre-processed
video clips introduced in [7] which were converted to grayscale and spatially
normalized to 48×48 pixels with zero mean and unit variance. Our rationale for
using an LDS representation for speed prediction is the fact that clustering and
categorization experiments in [7] showed compelling evidence that dynamics are
indicative of the traffic class. We argue that the notion of speed of an object
(e.g., a car) could be considered a property that humans infer from its visual
dynamics.

UCSD pedestrian dataset [8]. We use the Peds1 subset of the UCSD pedes-
trian dataset which contains 4000 frames with a ground-truth people count (both
directions and total) associated with each frame. Similar to [8] we ask the ques-
tion whether we can infer the number of people in a scene (or clip) without actu-
ally detecting the people. While this has been done by resorting to crowd/motion
segmentation and Gaussian process regression on low-level features extracted
from these segments, we go one step further and try to avoid any preprocessing
at all. In fact, our objective is to infer an average people count from an LDS
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representation of short video segments (i.e., within a temporal sliding window).
This is plausible because the visual dynamics of a scene change as people appear
in it. Further, an LDS does not only model the dynamics, but also the appear-
ance of videos; both aspects are represented in the observability matrix of the
system. We remark, though, that such a strategy does not allow for fine-grain
frame-by-frame predictions as in [8]. Yet, it has the advantages of not requiring
any pre-selection of features or possibly unstable preprocessing steps such as the
aforementioned crowd segmentation.

In our setup, we split the 4000 frames into 37 video clips of 400 frames each,
using a sliding window with steps of 100 frames, and associate an average people
count with each clip, see Fig. 2(b). The video clips are spatially down-sampled
to a resolution of 60 × 40 pixel (original: 238 × 158) to keep the observability
matrices at a reasonable size. Since the overlap between the clips potentially
biases the experiments, we introduce a weighted variant of system identification
(see Appendix B) with weights based on a Gaussian function centered at the
middle of the sliding window and a standard deviation of 100. While this ensures
stable system identification, by still using 400 frames, it reduces the impact of the
overlapping frames on the parameter estimates. With this strategy, the average
crowd count is localized to a smaller region.

Corpus callosum shapes [11]. To demonstrate GGR for modeling shape
changes, we use a collection of 32 corpus callosum shapes with ages varying
from 19 to 90 years, shown in Fig. 2(c). Each shape is represented by 64 2D
boundary landmarks, and is projected to a point on the Grassmannian using the
left-singular vectors obtained from the SVD decomposition of the 64 × 2 shape
matrix.

4.2 Results

We compare the performance of (i) GGR (pairwise searching) (i.e., the ap-
proximate solution), (ii) Full GGR, and (iii) Full piecewise GGR. For (iii), the
regression space is subdivided into regression intervals and a full regression so-
lution is computed for each interval independently. Given a (test) measurement,
a regressor is estimated for all intervals. We search over each interval and find
the closest point on the geodesic with the smallest distance. The value of the
regressor at this optimal point is then regarded as the predicted value for the
measurement. For full GGR, we set α = 0 because no prior information is known
about the measurements, and σ2 = 1. Two segments were used in Full piecewise
GGR and the breakpoint (separating the regression intervals) varied with the
dataset, but was roughly chosen to separate the data into two equal-sized groups
or two classes. While this is certainly an ad–hoc choice and could be fully data-
driven, our choice of two segments is only to demonstrate the easy extensibility
of our method to a piecewise regression formulation. To compare the three GGR
variants, we report the mean absolute error (MAE), computed over all folds in
a cross validation (CV) setup with a dataset-dependent number of folds.
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Fig. 3. Visualization of traffic speed predictions via 5-fold cross validation. The top
row shows the predictions vs. the videos sorted by speed ; the bottom row shows the
correlation with the ground-truth.

Signal frequency prediction (toy data). For this experiment, the number
of LDS states is set to p = 2 which is, in theory, sufficient to capture sine/cosine
signals. We divide the 25 signals into 5 groups for 5-fold CV. For Full piecewise
GGR, we regress on the signals with frequencies in the two intervals (0, 5) and
[5, 10). The testing MAE ranges from 0.49e-15±0.32e-15 for both GGR (pairwise
searching) and Full GGR to 0.58e-15±0.28e-15 for Full piecewise GGR, cf. Ta-
ble 1. On this toy data, this shows that all our regression formulation(s) can
essentially capture the data perfectly.

Traffic speed prediction. For each video clip, we estimate LDS models with
p = 10 states. The breakpoint of Full piecewise GGR is set at 50 [mph], which
roughly divides the videos into two categories, i.e., fast and slow. Results are
reported for 5-fold CV. A visualization of the predictions is shown in Fig. 3 with
the predictions versus the sorted speed measurements, as well as the correlation
with the ground-truth. As we can see from the MAEs in Table 1, the results
gradually improve as we switch from GGR (pairwise searching) to Full GGR
and Full piecewise GGR, with a top MAE of 3.35± 0.38 [mph] for testing.

Crowd counting. For each of the 37 video clips we extract from the Peds1

dataset, we estimate LDS models with p = 10 states using weighted system
identification as described in Appendix B. For Full piecewise GGR, the break-
point is set to a count of 23 people; this choice separates the 37 videos into two
groups of roughly equal size. Results are reported for 4-fold CV. From the results
shown in Fig. 4, we see that both Full GGR and Full piecewise GGR provide
visually close predictions to the ground-truth. From Table 1, we further see that
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Fig. 4. Visualization of crowd counting results via 4-fold cross validation. The top row
shows the crowd count predictions as a function of the sliding window index, overlaid
on the ground-truth counts; the bottom row shows the predictions versus the ground-
truth. The gray bands indicate the weighted standard deviation (±1σ) of the number
of people in the sliding window.

20406080

Age (years)

Fig. 5. Corpus callosum shapes along Full GGR geodesic; colored by age in years.

these two GGR variants have significantly better performance than the pairwise
searching strategy. In fact, Full GGR achieves the top prediction by improving
from 5.14±0.64 to 1.65±0.79. Although, Full piecewise GGR has lowest training
error among the three variants, its testing error is higher than for Full GGR,
indicating an overfit to the data.

Corpus callosum aging. We generate corpus callosum shapes along the geodesic
fit by Full GGR, as shown in Fig. 5. The shapes are recovered from the points
along the geodesic on the Grassmann manifold through scaling by the mean
singular values of the SVD results. As we can see, the shape shrinks from blue
to red, corresponding to 19 and 90 years of age; this demonstrates the thinning
trend of the corpus callosum with age and is consistent with [11].
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GGR	  
(pairwise	  searching)	   Full	  GGR	   Full	  piecewise	  GGR	  

Train	   Test	   Train	   Test	   Train	   Test	  

Signal	  freq.	  
(x	  10-‐15)	   0.50	  ±	  0.09	  	   0.49	  ±	  0.32	  	   0.50	  ±	  0.09	  	   0.49	  ±	  0.32	  	   0.52	  ±	  0.06	  	   0.58	  ±	  0.28	  	  

Traffic	  	  
speed	   6.46	  ±	  0.55	  	   6.20	  ±	  0.77	   2.98	  ±	  0.20	   4.59	  ±	  0.43	   1.65	  ±	  0.13	   3.35	  ±	  0.38	  

Crowd	  	  
counGng	   4.27	  ±	  0.33	   5.14	  ±	  0.64	   0.81	  ±	  0.21	   1.65	  ±	  0.79	   0.63	  ±	  0.08	   2.05	  ±	  0.88	  

Table 1. Mean absolute errors (MAE, computed via cross validation) ±1 standard
deviation on both training and testing data. Either Full GGR or Full piecewise GGR
give the best results. Full piecewise GGR leads to overfitting for the crowd counting
case, hence Full GGR is preferable in this case.

It is critical to note that since the Grassmann manifold has non-negative sec-
tional curvature, conjugate points do exist. This implies that there can be multi-
ple geodesics that connect any two points, resulting in a potentially non-unique
solution for the regression problem. However, Wong [28] proves that geodesics
are unique as long as subspace angles φi are less than π/2. We evaluated all
subspace angles in our experiments against this criteria and found no violation
which ensures that all estimated geodesics were unique. While the issue of con-
jugate points exists with any manifold of non-negative curvature, this criteria
can certainly serve as a sanity check for any solution to the regression problem.

5 Discussion

In this paper, we developed a general theory for Grassmannian geodesic regres-
sion. This allowed us to compute regression geodesics that explain the variation
in the data on the Grassmannian. We demonstrated the utility of our method
for modeling a dependent Grassmannian-valued variable in the form of observ-
ability matrices from LDS and affine-invariant shape data, with respect to a
scalar-valued independent variable. We also showed that our formulation natu-
rally extends to piecewise regression models.

The experimental results on the traffic speed data show that the dynamics
captured by the LDS models correlate with traffic speed, leading to predictions
with an MAE error of 3.35 ± 0.38 [mph]. This is an encouraging result, espe-
cially since the dataset has an unbalanced design and requires no higher-level
preprocessing (e.g., tracking). For crowd counting, an MAE of 1.65± 0.79 does
not beat the frame-by-frame counting results in [8] (1.31 for frame counting on
Peds1, and 0.59 for our measure of average counting). However, in our case,
information is captured by the LDS model directly from the raw image data,
whereas frame-by-frame counting typically requires a collection of suitable fea-
tures and thus involves more preprocessing. Additionally, our approach is not
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directly comparable to [8], since regressing an average people count is influenced
by the variation of the counts within the LDS estimation window.

In our shape regression experiment, we show that the resulting estimated
geodesic effectively summarizes the trajectory of changes in the corpus callosum
for a population. In fact, the corpus callosum exhibits a clear thinning with
progressing age. Since the estimated geodesic summarizes the complete nonlinear
variability of aging related biological changes, and is compactly represented by
its initial conditions, this modeling opens the possibility of nonlinear statistics
on changes in (anatomical) shapes.

Some open questions need to be addressed in future work. For example,
piecewise GGR has the advantage of greater flexibility but inherently depends
upon the optimal number of segments. While the breakpoints could, in princi-
ple, be chosen in a data-driven way, the increased flexibility makes the model
susceptible to overfitting issues (especially with unbalanced data). Furthermore,
since we fit the segments independently, this results in discontinuous piecewise
geodesic curves. Thanks to the adjoint method it is, however, possible to derive
a continuous-piecewise GGR variant by constraining the geodesics to match at
the segment boundaries (see supplementary material for details).

Another interesting avenue to pursue in future work would be to leverage
the concept of time-warping in which the time-axis is bent according to some
parametric function. This increases flexibility and could be beneficial in vision
applications where we have specific prior knowledge about the data, e.g., traffic
speed measurements exhibiting saturation in the upper and lower ranges. The
general strategy to incorporate time-warping into the regression formulation is
developed in [17] and exemplified on the Grassmannian, using the numerical
machinery developed in this work.

A Line search on the Grassmannian

Performing a line search is not as straightforward as in Euclidean space since
we need to assure that the constraints for Y(r0) and Ẏ(r0) are fulfilled for any
given step. In particular, changing Y(r0) will change the associated tangent
vector Ẏ(r0). Once, we have updated Y(r0) to Yu(r0) by moving along the
geodesic defined by Y(r0) and the gradient of the energy with respect to this
initial point, i.e., ∇X1(r0)E, we can transport the tangent Ẏ(r0) to Yu(r0) using
the closed form solution for parallel transport of [10]. In particular,

Ẏu(r0) = [Y(r0)V U]

(
− sin tΣ

cos tΣ

)
U> + (In −UU>)Ẏ(r0) (6)

where H = UΣV> is the compact SVD of the tangent vector at Y(r0) along
the geodesic connecting Y(r0) and Yu(r0). Algorithm 2 lists the line search
procedure in full technical detail.
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Algorithm 2: Grassmannian equivalent of xk+1 = xk −∆tg, where ∆t
is the timestep and g is the gradient.

Data: Y(r0), Ẏ(r0), ∇Y(r0)E, ∇Ẏ(r0)
E, ∆t

Result: Updated Yu(r0) and Ẏu(r0)

Compute Ẏ
u

(r0) = Ẏ(r0)−∆t∇X2(r0)E
Compute Yu(r0) by flowing for ∆t along geodesic with initial condition
(Y(r0),−∇X1(r0)E) (using algorithm in [10])

Transport Ẏ
u

(r0) along the geodesic connecting Y(r0) to Yu(r0), using (6),

resulting in Ẏ
u

T (r0)
Project updated initial velocity onto the tangent space (for consistency):

Ẏu(r0)← (In −Yu(r0)Yu(r0)>)Ẏ
u

T (r0).

B Temporally localized system identification

To support a non-uniform weighting of samples during system identification,
we propose a temporally localized variant of [9]. This is beneficial in situations
where we need a considerable number of frames for stable system identification,
yet not all samples should contribute equally to the LDS parameter estimates.
Specifically, given the measurement matrix M = [y1, · · · ,yτ ] and a set of weights
w = [w1, · · · , wτ ], such that

∑
i wi = τ , we perform a weighted SVD of M, i.e.,

UΣV> = Mdiag(
√

w) . (7)

Then, as in [9], C = U and X = ΣV>. Once the state matrix X has been

determined, A can be computed as A = Xτ
2W

1
2 (Xτ−1

1 W
1
2 )†, where † denotes

the pseudoinverse, Xτ
2 = [x2, · · · ,xτ ], Xτ−1

1 = [x1, · · · ,xτ−1] and W
1
2 is a

diagonal matrix with W
1
2
ii = [ 1

2 (wi + wi+1)]1/2.
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